0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

基于图深度学习的开源工具包——CogDL

454398 来源:机器之心 作者:AMiner学术头条 2020-10-29 10:51 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

一行代码命令可以做什么?

“一行命令可以实现‘一条龙’运行实验。”

访问 github.com/THUDM/cogdl 一键体验!

近年来,结构化数据的表示学习备受业界关注与热捧,图神经网络成为处理相关工作的有力工具,基于随机游走、矩阵分解的方法在搜索推荐、分子和药物生成等领域有着十分重要的应用。

但是,由于许多项目的代码并未开源或者开源代码的风格多种多样,研究者和使用者在使用这些方法的过程中会遇到各种各样的问题,比如实验复现以及如何在自己的数据集上运行模型等。

具体而言(以学术研究为例),研究者和使用者在从事研究过程中需要将自己提出的模型与其他模型进行对比,来验证所提出模型的有效性。但在对比过程中,他们需要选定若干个下游任务,在每个任务下,通过公平的评估方式来对比不同模型的性能,由于不同模型在提出时可能会使用不完全一致的下游任务或者评估方式,他们需要花费大量精力修改基线模型来进行适配。

那么,如何快速、便捷地复现出基线模型(baseline)的结果,并将这些模型应用到自定义的数据集上?

为此,清华大学知识工程实验室(KEG)联合北京智源人工智能研究院(BAAI)开发了一种基于图深度学习的开源工具包——CogDL(底层架构为 PyTorch,编程语言为 Python)。

据 CogDL 开发者介绍,该工具包通过整合多种不同的下游任务,同时搭配合适的评估方式,使得研究者和使用者可以方便、快速地运行出各种基线模型的结果,进而将更多精力投入研发新模型的工作之中。

“对图领域中每种任务,我们提供了一套完整的“数据处理-模型搭建-模型训练-模型评估”的方案,易于研发人员做相关的实验。比如对于图上半监督节点分类任务,我们整合了常用的数据集 Cora、Citeseer、Pubmed,提供了经典的/前沿的各种模型(包括GCN、GAT、GCNII 等),提供了相应的训练脚本,并且整理出了一个相应的排行榜作为参考。” CogDL 开发者说。

CogDL 最特别的一点在于它以任务(task)为导向来集成所有算法,将每一个算法分配在一个或多个任务下,从而构建了 “数据处理-模型搭建-模型训练和验证” 一条龙的实现。

此外,CogDL 也支持研究者和使用者自定义模型和数据集,并嵌入在 CogDL 的整体框架下,从而帮助他们提高开发效率,同时也包含了当前许多数据集上 SOTA 算法的实现,并且仍然在不断更新。 CogDL:面向任务,扩展算法 图表示学习算法可以分为两类:一类是基于图神经网络的算法,另一类是基于 Skip-gram 或矩阵分解的算法。前者包括 GCN、GAT、GraphSAGE 和 DiffPool 等,以及适用于异构图的 RGCN、GATNE 等;后者则包括 Deepwalk、Node2Vec、HOPE 和 NetMF 等,以及用于图分类的 DGK、graph2vec 等算法。

大体上,CogDL 将已有图表示学习算法划分为以下 6 项任务:

有监督节点分类任务(node classification):包括 GCN、GAT、GraphSAGE、MixHop 和 GRAND 等;

无监督节点分类任务(unsupervised node classification):包括 DGI、GraphSAGE(无监督实现),以及 Deepwalk、Node2vec、ProNE 等;

有监督图分类任务(graph classification):包括 GIN、DiffPool、SortPool 等;

无监督图分类任务(unsupervised graph classification):包括 InfoGraph、DGK、Graph2Vec 等;

链接预测任务(link prediction):包括 RGCN、CompGCN、GATNE 等;

异构节点分类(multiplex node classification):包括 GTN、HAN、Metapath2vec 等。

CogDL 还包括图上的预训练模型 GCC,GCC 主要利用图的结构信息来预训练图神经网络,从而使得该网络可以迁移到其他数据集上,来取得较好的节点分类和图分类的效果。 能用来做什么? 那么,研究者和使用者可以利用 CogDL 做些什么?主要有三点:跟进 SOTA、复现实验,以及自定义模型和数据。

跟进 SOTA。CogDL 跟进最新发布的算法,包含不同任务下 SOTA 的实现,同时建立了不同任务下所有模型的 leaderboard(排行榜),研究人员和开发人员可以通过 leaderboard 比较不同算法的效果。

复现实验。论文模型的可复现性是非常重要的。CogDL 通过实现不同论文的模型也是对模型可复现性的一个检验。

自定义模型和数据。“数据-模型-训练”三部分在 CogDL 中是独立的,研究者和使用者可以自定义其中任何一部分,并复用其他部分,从而提高开发效率。 怎么用? 有两种方法:命令行直接运行,通过 API 调用 命令行直接运行。通过命令行可以直接指定 "task"、"model"、"dataset" 以及对应的超参数,并且支持同时指定多个模型和多个数据集,更方便。代码如下:

支持自定义数据集和模型,并且提供了自动调参的例子。

据 CogDL 研究者介绍,从 2019 年启动以来,该项目经过了多次密集的研发,到目前已经整合了图领域的重要任务及其相关的经典和前沿的模型。

CogDL 开发者表示,“起初,我们只是整合了实验室内部从事相关领域研究的同学所使用的相关代码,为了方便实验室其余的同学运行相关的实验。后来,我们决定将代码开源出来,让更多的研究和开发人员能够借助我们的代码从事相关工作。”

如今,CogDL 已经上线了 CogDL v0.1.1。

“我们增加了一些最前沿的图神经网络模型,包括图自监督模型、图预训练模型。用户可以利用图上预训练好的模型做不同的下游任务。在下游任务方面,我们增加了知识图谱的链接预测任务,方便从事知识图谱领域的用户进行相关实验。” CogDL 开发者说。

具体而言,在监督节点分类任务上,增加了 GRAND 和 DisenGCN,GRAND 在 Cora、PubMed、Citeseer 上取得了 SOTA 或者接近 SOTA 的效果;无监督节点分类任务上,增加了 DGI、MVGRL、GraphSAGE(无监督实现);在链接预测任务上,增加了知识图谱上的链接预测 GNN 模型 RGCN 和 CompGCN;以及增加了图上的预训练模型 GCC。

另外,CogDL 也提供了使用 optuna 进行超参数搜索的 example,通过指定 "模型,数据集,参数" 即可自动实现超参数的搜索。

接下来,CogDL 研究者希望在现有基础上,继续补充其余的图领域的下游任务,添加更多的数据集,更新每个任务的排行榜;同时增加最前沿的关于预训练的图神经网络模型,支持用户直接使用预训练好的模型来进行相关应用;以及完善 CogDL 的教程和文档,让刚接触图领域的初学者能够快速上手。

谈及最终的愿景,CogDL 研究者表示,一方面希望从事图数据领域的研究人员可以方便地利用 CogDL 来做实验,另一方面希望面向实际应用的开发人员可以利用 CogDL 来快速地搭建相关下游应用,最终打造一个完善的图领域的研发生态。
编辑:hfy

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 人工智能
    +关注

    关注

    1813

    文章

    49777

    浏览量

    261820
  • python
    +关注

    关注

    57

    文章

    4859

    浏览量

    89632
  • 深度学习
    +关注

    关注

    73

    文章

    5591

    浏览量

    123948
  • 结构化数据
    +关注

    关注

    0

    文章

    3

    浏览量

    2630
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    eForce无线通信软件开发工具包兼容WLAN模块WKR612AA1

    近期,eForce株式会社宣布,其面向嵌入式设备的无线通信软件开发工具包(μC3-WLAN SDK)现已兼容 KAGA FEI 生产的无线局域网(WLAN)模块"WKR612AA1"。
    的头像 发表于 09-24 15:16 749次阅读

    量化评估企业软件测试能力的评估工具包

    “每次版本迭代,测试团队总是最晚下班的一群人...”在汽车软件快速迭代的今天,这样的场景已成为行业常态:开发效率不断提升,但测试环节却逐渐成为拖慢交付的“最后一公里”。复杂的工具链、割裂的流程、模糊
    的头像 发表于 08-27 10:04 484次阅读
    量化评估企业软件测试能力的评估<b class='flag-5'>工具包</b>

    IQM 宣布 Resonance 量子云平台重大升级,推出全新软件开发工具包

    进程,并为终端用户带来性能强大的新一代量子系统。 此次升级将 Qrisp——一个源自德国弗劳恩霍夫 FOKUS 研究所的项目——设为平台新的默认软件开发工具包 (SDK)。Qrisp 为量子开发者
    的头像 发表于 07-11 11:03 460次阅读

    开源电机驱动,免费直播学习!

    开源电机驱动,免费直播学习!
    的头像 发表于 06-13 10:07 1309次阅读
    <b class='flag-5'>开源</b>电机驱动,免费直播<b class='flag-5'>学习</b>!

    开源鸿蒙工程工具分论坛圆满举办

    近日,开源鸿蒙开发者大会2025(OHDC.2025)工程工具分论坛在深圳圆满举办。本次分论坛由开源鸿蒙IDE SIG组长、华为终端BG工程工具技术专家唐春担任出品人,主题为“
    的头像 发表于 06-05 15:35 837次阅读

    在OpenVINO™工具套件的深度学习工作台中无法导出INT8模型怎么解决?

    无法在 OpenVINO™ 工具套件的深度学习 (DL) 工作台中导出 INT8 模型
    发表于 03-06 07:54

    在Google Colab笔记本电脑上导入OpenVINO™工具包2021中的 IEPlugin类出现报错,怎么解决?

    在 Google* Colab Notebook 上OpenVINO™工具包 2021 中使用了 IEPlugin 。 遇到: ImportError: cannot import name \'IEPlugin\' from \'openvino.inference_engine\'
    发表于 03-05 10:31

    构建开源OpenVINO™工具包后,使用MYRIAD插件成功运行演示时报错怎么解决?

    构建开源OpenVINO™工具包后,使用 MYRIAD 插件成功运行演示。 使用 CPU 插件运行演示时遇到错误: Cannot load library \'libarmPlugin.so
    发表于 03-05 09:57

    灵汐科技开源类脑深度学习应用开发平台BIDL

    富案例等问题,一直制约着其广泛应用。为了突破这一瓶颈,灵汐科技联合脑启社区正式宣布开源类脑深度学习应用开发平台BIDL(Brain-inspired Deep Learning)。
    的头像 发表于 03-05 09:13 1506次阅读
    灵汐科技<b class='flag-5'>开源</b>类脑<b class='flag-5'>深度</b><b class='flag-5'>学习</b>应用开发平台BIDL

    安装OpenVINO™工具包稳定扩散后报错,怎么解决?

    已安装OpenVINO™工具包稳定扩散并收到错误消息: \"BackendCompilerFailed: openvino_fx raised RuntimeError
    发表于 03-05 06:56

    云计算开发工具包的功能

    随着云计算技术的不断成熟,越来越多的企业开始将应用和服务迁移到云端,以享受弹性计算资源、高可用性和成本效益等优势。为了加速这一进程,云计算服务提供商推出了各种开发工具包。下面,AI部落小编带您了解云计算开发工具包的主要功能。
    的头像 发表于 02-21 11:02 558次阅读

    军事应用中深度学习的挑战与机遇

    人工智能尤其是深度学习技术的最新进展,加速了不同应用领域的创新与发展。深度学习技术的发展深刻影响了军事发展趋势,导致战争形式和模式发生重大变化。本文将概述
    的头像 发表于 02-14 11:15 828次阅读

    Labview声音和振动工具包示例文件Sound Level

    Labview 声音和振动工具包示例文件,声压测试,有模拟和DAQ两个文件。
    发表于 01-05 09:15 5次下载

    TSP工具包软件的应用说明

    在一个需要快速开发测试的行业中,有效的自动化和便捷代码的开发需求比以往任何时候都显得更加突出。企业在努力提高产品质量的同时,更需要寻求更短的上市时间,合适的工具正是实现这一目标的关键
    的头像 发表于 01-03 15:53 3309次阅读
    TSP<b class='flag-5'>工具包</b>软件的应用说明

    最新Simplicity SDK软件开发工具包发布

    最新的SimplicitySDK软件开发工具包已经发布!此次更新针对SiliconLabs(芯科科技)第二代无线开发平台带来了包括蓝牙6.0的信道探测(Channel Sounding
    的头像 发表于 12-24 09:47 1513次阅读