0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

一个学习何时做分类决策的强化学习模型:Jumper

倩倩 来源:雷锋网 2020-04-17 11:25 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

文本理解是自然语言处理领域的一个核心目标,最近取得了一系列的进展,包括机器翻译、问答等。不过之前的工作大多数是关心最终的效果,而人们对于模型何时做出决定(或做决定的原因)却知之甚少,这是一个对于理论研究和实际应用都非常重要的课题。深度好奇(DeeplyCurious.AI) 最近在IJCAI-2018上展示了一个学习何时做分类决策的强化学习模型:Jumper, 该论文将文本分类问题建模成离散的决策过程,并通过强化学习来优化,符号化表征模型的决策过程具有很好的可解释性,同时分类效果也达到最高水平。

本文提供了一种新的框架,将文本理解建模为一个离散的决策过程。通常在阅读过程中,人们寻找线索、进行推理,并从文本中获取信息;受到人类认知过程的启发,我们通过将句子逐个地递送到神经网络来模仿这个过程。在每个句子中,网络基于输入做出决策(也称为动作),并且在该过程结束时,该决策序列可以视为是对文本有了一些“理解”。

特别一提的是,我们专注于几个预定义子任务的文本分类问题。当我们的神经网络读取一个段落时,每个子任务在开始时具有默认值“无”(None)。 在每个决策步骤中,段落的句子按顺序被递送到神经网络;之后,网络来决定是否有足够的信心“跳转”到非默认值作为特定时间的预测。我们施加约束,即每次跳转都是最终决定,它不可以在后面的阅读中被更改。如图1所示,给定一段话,有多个预先定义好的问题等待回答;模型按句子阅读,在阅读过程中,问题的答案陆续被找到。模型从默认决策到非默认决策都是一个“跳转”的过程,正因此我们称模型为Jumper。在人类阅读的过程中,人们通常会获得一致的阅读理解的结果,但是阅读理解过程中的很多环节却经常是微妙和难以捉摸的。同样,我们也假设我们的训练标签仅包含最终结果,并且没有给出关于模型应该做出决定的步骤的监督信号。也就是说,我们通过强化学习在弱监督信号情况下训练Jumper模型。

图1 Jumper模型在阅读段落的决策过程

Jumper模型主要由编码层、控制器、符号输出层构成。编码层将句子编码成定长的向量,控制器根据历史和当前输入产生当前的决定,符号输出层使模型的输出满足跳转约束,即每个决策过程最多只能有一次跳转。

图2 Jumper模型的基本框架

跳转约束的作用在于使模型更加慎重地决定何时跳转。因此,Jumper模型的优化目标有两个,第一个是尽可能早地“跳转”,第二个是尽可能预测准。假设t* 是最佳的跳转时间,那么如果模型在t* 时刻之前跳转,则模型还没有看到真正的pattern,那么得到的答案等同于随机猜;如果模型在t* 时刻之后跳转,而t* +1句话可能不存在,因此没有机会跳转从而预测错误。

通过上述建模,论文把文本分类问题转化为离散的决策过程,训练好的Jumper输出的离散决策过程就可以表达模型对文本的理解过程;而决策过程本身并没有标签,因此我们用policy gradient强化学习算法来训练,如果最终的决定和分类标签一致,就奖励整个决策动作,如果不一致,则惩罚。

我们对三个任务评估了Jumper,包括两个基准数据集和一个实际工业应用。我们首先分析了Jumper的分类准确性,并与几个基线进行了比较。表1显示Jumper在所有这些任务上实现了相当或更好的性能,这表明将文本分类建模为顺序决策过程不仅不会损害、甚至提高了分类准确性。

表1 在电影评论数据集(MR)、新闻数据集(AG)和工伤数据集(OI)的测试集上的准确率

我们想指出,“准确性”并不是我们关注的唯一表现。更重要的是,提出的模型能够减少阅读过程,或者找到文本分类的关键支撑句。只要在阅读过程中基于“跳转约束”限制而看到足够的证据,Jumper就能做出决定,并且在预测之后不需要再阅读之后的句子。在表2中可以看到,我们的模型与强基线相比达到了相似或更高的性能,与此同时,它还将文本读取的长度缩减了30-40%,从而加速了推断预测。

表2

除了准确率高和推断速度快以外,我们更好奇Jumper是否能够在信息提取式任务(例如工伤级别分类任务)中找到正确的位置做出决策。我们在400个数据点中标注关键支撑句(即最佳跳转位置)作为测试基础。需要注意的是,在这个实验中我们仍然没有跳转位置的训练标签。我们将Jumper与使用相同神经网络的层级CNN-GRU模型进行比较,但在训练方法方面有所不同;层级CNN-GRU在训练时,用段落末尾的交叉熵作为损失函数。在测试期间,我们将预测器应用于每个步骤并找到它做出预测的第一个位置。我们还列出了一个经典CNN的结果作为基线模型,并使用了最大池化操作(max-pooling)选择的单词最多的那些句子来作为测试数据。我们使用了跳转动作的准确率来评测Jumper。通过表3可知,Jumper准确地找到了测试集中所有关键支撑句的位置,说明我们的单跳约束迫使模型更仔细地思考何时做出决策,也验证了强化学习是学习决策正确位置的有效方法。

表3 各模型在工伤等级分类任务(OI-Level)上寻找关键支撑句的效果统计。该任务的关键支撑句在文本中通常聚集于一处,不存在歧义,便于衡量各模型效果。CA:分类准确率,JA:跳跃准确率,OA:在分类准确条件下的跳跃准确率

图3则显示了Jumper在阅读时做出决策的过程。其中,Jumper在前六个句子中保持默认决策(不做跳转),而在到达关键支撑句时突然跳转,这体现了Jumper可以识别关键支撑句,从而找到最佳跳跃位置。因此,在这类关键支撑语句集中出现时,Jumper可以在完成分类任务的同时找到关键支撑句,因此具有较强的可解释性。

图3 Jumper决策序列展示

总结

我们提出了一种新的模型Jumper,它在阅读段落时将文本分类建模为逐个句子的顺序决策过程。我们通过强化学习训练带有跳转约束的Jumper,实验表明:1) Jumper的性能与基线相当或更高;2) 它在很大程度上减少了文本阅读量;3) 如果所需信息在文中的分布是局域性的,它可以找到关键的支撑句子,具有很好的可解释性。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 控制器
    +关注

    关注

    114

    文章

    17638

    浏览量

    190245
  • 机器翻译
    +关注

    关注

    0

    文章

    141

    浏览量

    15466
  • 自然语言处理

    关注

    1

    文章

    629

    浏览量

    14563
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    今日看点:智元推出真机强化学习;美国软件公司SAS退出中国市场

    智元推出真机强化学习,机器人训练周期从“数周”减至“数十分钟”   近日,智元机器人宣布其研发的真机强化学习技术,已在与龙旗科技合作的验证产线中成功落地。据介绍,此次落地的真机强化学习方案,机器人
    发表于 11-05 09:44 893次阅读

    自动驾驶中常提的“强化学习”是啥?

    [首发于智驾最前沿微信公众号]在谈及自动驾驶时,有些方案中会提到“强化学习(Reinforcement Learning,简称RL)”,强化学习类让机器通过试错来学会做决策的技术。
    的头像 发表于 10-23 09:00 325次阅读
    自动驾驶中常提的“<b class='flag-5'>强化学习</b>”是<b class='flag-5'>个</b>啥?

    自动驾驶中Transformer大模型会取代深度学习吗?

    [首发于智驾最前沿微信公众号]近年来,随着ChatGPT、Claude、文心言等大语言模型在生成文本、对话交互等领域的惊艳表现,“Transformer架构是否正在取代传统深度学习”这
    的头像 发表于 08-13 09:15 3916次阅读
    自动驾驶中Transformer大<b class='flag-5'>模型</b>会取代深度<b class='flag-5'>学习</b>吗?

    NVIDIA Isaac Lab可用环境与强化学习脚本使用指南

    Lab 是适用于机器人学习的开源模块化框架,其模块化高保真仿真适用于各种训练环境,Isaac Lab 同时支持模仿学习(模仿人类)和强化学习
    的头像 发表于 07-14 15:29 1827次阅读
    NVIDIA Isaac Lab可用环境与<b class='flag-5'>强化学习</b>脚本使用指南

    【书籍评测活动NO.62】本书读懂 DeepSeek 全家桶核心技术:DeepSeek 核心技术揭秘

    时的基本礼仪和清晰度; 第二次是在强化学习之后 ,收集在训练中表现优秀的解题示例,再混合些人工整理的题目,重新训练模型。通过这样的流程,DeepSeek-R1 就像
    发表于 06-09 14:38

    18常用的强化学习算法整理:从基础方法到高级模型的理论技术与代码实现

    本来转自:DeepHubIMBA本文系统讲解从基本强化学习方法到高级技术(如PPO、A3C、PlaNet等)的实现原理与编码过程,旨在通过理论结合代码的方式,构建对强化学习算法的全面理解。为确保内容
    的头像 发表于 04-23 13:22 1310次阅读
    18<b class='flag-5'>个</b>常用的<b class='flag-5'>强化学习</b>算法整理:从基础方法到高级<b class='flag-5'>模型</b>的理论技术与代码实现

    【「零基础开发AI Agent」阅读体验】+初品Agent

    。 Agent在发展过程中,经历了5阶段,即: 1)符号Agent阶段 2)反应式Agent阶段 3)基于强化学习的Agent阶段 4)带迁移学习和元学习的Agent阶段 5)基于大
    发表于 04-22 11:51

    基于RV1126开发板实现自学习图像分类方案

    在RV1126开发板上实现自学习:在识别前对物体图片进行模型学习,训练完成后通过算法分类得出图像的模型ID。 方案设计逻辑流程
    的头像 发表于 04-21 13:37 11次阅读
    基于RV1126开发板实现自<b class='flag-5'>学习</b>图像<b class='flag-5'>分类</b>方案

    详解RAD端到端强化学习后训练范式

    受限于算力和数据,大语言模型预训练的 scalinglaw 已经趋近于极限。DeepSeekR1/OpenAl01通过强化学习后训练涌现了强大的推理能力,掀起新轮技术革新。
    的头像 发表于 02-25 14:06 1019次阅读
    详解RAD端到端<b class='flag-5'>强化学习</b>后训练范式

    模型领域常用名词解释(近100

    分类进行了整理,以下供参考:模型架构与基础概念大语言模型(LLM,LargeLanguageModel):种基于深度学习的大规模神经网络
    的头像 发表于 02-19 11:49 1277次阅读
    大<b class='flag-5'>模型</b>领域常用名词解释(近100<b class='flag-5'>个</b>)

    机器学习模型市场前景如何

    当今,随着算法的不断优化、数据量的爆炸式增长以及计算能力的飞速提升,机器学习模型的市场前景愈发广阔。下面,AI部落小编将探讨机器学习模型市场的未来发展。
    的头像 发表于 02-13 09:39 619次阅读

    如何优化BP神经网络的学习

    优化BP神经网络的学习率是提高模型训练效率和性能的关键步骤。以下是些优化BP神经网络学习率的方法: 、理解
    的头像 发表于 02-12 15:51 1423次阅读

    浅谈适用规模充电站的深度学习有序充电策略

    深度强化学习能够有效计及电动汽车出行模式和充电需求的不确定性,实现充电场站充电成本化的目标。通过对电动汽车泊车时间和充电需求特征进行提取,建立适用于大规模电动汽车有序充电的马尔可夫决策过程模型,并
    的头像 发表于 02-08 15:00 805次阅读
    浅谈适用规模充电站的深度<b class='flag-5'>学习</b>有序充电策略

    xgboost在图像分类中的应用

    XGBoost(eXtreme Gradient Boosting)是种高效的机器学习算法,它基于梯度提升框架,通过构建多个弱学习器(通常是决策树)来提高
    的头像 发表于 01-19 11:16 1558次阅读

    AI模型部署边缘设备的奇妙之旅:目标检测模型

    用作分类任务中最后的输出层,以生成各个类别的概率估计。优点 产生概率分布:Softmax可以将模型的原始输出转换成合理的概率分布,这对于解释性和
    发表于 12-19 14:33