0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

结合两种流行的机器学习方法,创造了一种新的人工智能程序

倩倩 来源:脑机接口社区 2020-04-15 14:28 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

筑波大学(Universityof Tsukuba)的研究人员结合两种流行的机器学习方法,创造了一种新的人工智能程序,用于对老鼠的睡眠阶段进行自动分类。该算法被称为MC-SleepNet,其准确率超过96%,对生物信号中的噪声具有很强的鲁棒性。利用该系统对数据进行自动标注,可以极大地帮助睡眠研究人员分析他们的实验结果。

研究睡眠的科学家经常用老鼠作为动物模型,以便更好地了解大脑活动在不同阶段的变化方式。这些阶段可以分为清醒、REM(快速眼动)睡眠和非快速眼动睡眠。

图1.每个阶段的EEG / EMG信号示例

(A)唤醒-Wake (B)非快速眼动non-REM (C)快速眼动-REM

在此之前,研究人员对睡着的老鼠的脑电波进行了监测,结果得到了海量的数据,而这些数据需要团队人员进行大量的手工标注。这成为了研究过程的一个非常重要的瓶颈。

现在,筑波大学(Universityof Tsukuba)的研究人员在该项研究中提出了MC-SleepNet算法,该算法可以根据小鼠的脑电图(EEG)和肌电图(EMG)信号,对其睡眠阶段进行自动分类,这两种信号分别记录了小鼠大脑和身体的电活动。这种算法结合了两种机器学习技术,卷积神经网络(CNN)和长短时记忆(LSTM)递归神经网络,以达到超过现有的最佳自动方法的精度。

MC-SleepNet结构

MC-SleepNet使用八种类型的层:卷积层、最大池化层、dropout层、连接层、按元素顺序添加层、bi-LSTM层、全连接层和softmax层。每一层的参数在方框中说明。

项目研究人员、该论文通讯作者KazumasaHorie解释道:“机器学习是一个激动人心的新研究领域,它的重要应用是将医学与计算机科学相结合。它允许我们根据标注的示例自动对新数据进行分类。”当需要寻找的模式不为人所知时,比如睡眠阶段,其价值尤为明显。通过这种方式,算法可以“学习”如何在不显式编程的情况下做出复杂的决策。

在这个项目中,由于使用了较大的数据集,所以准确性非常高。它收集了超过4200个生物信号,是迄今为止所有睡眠研究中最大的数据集。同时,通过实现CNN,该算法对个体差异和噪声具有较强的鲁棒性。

MC-SleepNet的睡眠阶段评分结果示例

基于MC-SleepNet的特征提取模块提取特征的实例。

(左)窄CNN提取脑电图特征。(中)宽带CNN提取脑电图特征。(右)肌电图特征。

这项工作的主要进展是将任务分配给两种机器学习方法。首先使用CNN从大脑和身体的电活动记录中提取感兴趣的特征。然后将这些数据传递给LSTM,以确定哪些特征最能反映老鼠所经历的睡眠阶段。研究人员Hiroyuki Kitagawa 表示“把这项工作转化为对人类睡眠阶段的分类是可以的。”

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 算法
    +关注

    关注

    23

    文章

    4762

    浏览量

    97191
  • 人工智能
    +关注

    关注

    1813

    文章

    49772

    浏览量

    261733
  • 机器学习
    +关注

    关注

    66

    文章

    8541

    浏览量

    136248
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    用PLC实现卷径计算的两种算法

    卷径计算,是动态计算如钢卷,纸卷等存料量的一种方法,它是实现张力控制和自动充放料、以及甩尾控制的重要前提。卷径计算目前主流的方法两种一种是根据机列速度(产线速度)和和被测卷的转动角
    的头像 发表于 11-14 16:54 1416次阅读
    用PLC实现卷径计算的<b class='flag-5'>两种</b>算法

    挖到宝人工智能综合实验箱,高校新工科的宝藏神器

    的深度学习,构建起从基础到前沿的完整知识体系,门实验箱就能满足多门课程的学习实践需求,既节省经费又不占地 。 五、代码全开源,学习底层算法 所有实验全部开源,这对于想要深入
    发表于 08-07 14:30

    挖到宝!比邻星人工智能综合实验箱,高校新工科的宝藏神器!

    的深度学习,构建起从基础到前沿的完整知识体系,门实验箱就能满足多门课程的学习实践需求,既节省经费又不占地 。 五、代码全开源,学习底层算法 所有实验全部开源,这对于想要深入
    发表于 08-07 14:23

    超小型Neuton机器学习模型, 在任何系统级芯片(SoC)上解锁边缘人工智能应用.

    Neuton 是家边缘AI 公司,致力于让机器 学习模型更易于使用。它创建的模型比竞争对手的框架小10 倍,速度也快10 倍,甚至可以在最先进的边缘设备上进行人工智能处理。在这篇博文
    发表于 07-31 11:38

    ARM入门学习方法分享

    。 以下是些入门学习方法的分享: 、 理解基本概念:首先,了解ARM是什么以及它的基本概念是很重要的。ARM(Advanced RISC Machines)指的是一种精简指令集
    发表于 07-23 10:21

    最新人工智能硬件培训AI 基础入门学习课程参考2025版(大模型篇)

    人工智能大模型重塑教育与社会发展的当下,无论是探索未来职业方向,还是更新技术储备,掌握大模型知识都已成为新时代的必修课。从职场上辅助工作的智能助手,到课堂用于学术研究的智能工具,大模型正在工作生活
    发表于 07-04 11:10

    一种无刷直流电机霍耳信号与定子绕组关系自学习方法

    的关系。提出了一种无刷直流电机霍耳信号与定子绕组关系自学习方法,该方法通过不同的绕组通电组合将电机转子依次转到6个不同的位置并记录对应的霍耳信号,然后得出霍耳信号与定子绕组的对应关系。所提出的
    发表于 03-25 15:15

    人工智能机器学习以及Edge AI的概念与应用

    人工智能相关各种技术的概念介绍,以及先进的Edge AI(边缘人工智能)的最新发展与相关应用。 人工智能机器学习是现代科技的核心技术
    的头像 发表于 01-25 17:37 1600次阅读
    <b class='flag-5'>人工智能</b>和<b class='flag-5'>机器</b><b class='flag-5'>学习</b>以及Edge AI的概念与应用

    传统机器学习方法和应用指导

    用于开发生物学数据的机器学习方法。尽管深度学习般指神经网络算法)是个强大的工具,目前也非常流行
    的头像 发表于 12-30 09:16 1986次阅读
    传统<b class='flag-5'>机器</b><b class='flag-5'>学习方法</b>和应用指导

    【「具身智能机器人系统」阅读体验】1.初步理解具身智能

    与未来,涵盖如基于行为的人工智能、生物启发的进化人工智能及认知机器人技术的发展。这历史背景为随后的大模型驱动的具身智能讨论奠定
    发表于 12-28 21:12

    【「具身智能机器人系统」阅读体验】1.全书概览与第学习

    非常感谢电子发烧友提供的这次书籍测评活动!最近,我一直在学习大模型和人工智能的相关知识,深刻体会到机器人技术是个极具潜力的未来方向,甚至可以说是推动时代变革的重要力量。能参与这次活动
    发表于 12-27 14:50

    【「具身智能机器人系统」阅读体验】+数据在具身人工智能中的价值

    嵌入式人工智能(EAI)将人工智能集成到机器人等物理实体中,使它们能够感知、学习环境并与之动态交互。这种能力使此类机器人能够在人类社会中有效
    发表于 12-24 00:33

    人工智能推理及神经处理的未来

    人工智能行业所围绕的是个受技术进步、社会需求和监管政策影响的动态环境。机器学习、自然语言处理和计算机视觉方面的技术进步,加速
    的头像 发表于 12-23 11:18 876次阅读
    <b class='flag-5'>人工智能</b>推理及神经处理的未来

    【「具身智能机器人系统」阅读体验】+初品的体验

    Intelligence,EAI)是个集多学科技术与理论于体的研究领域,旨在探讨智能如何在智能体与其环境的互动中展现。 与传统的人工智能
    发表于 12-20 19:17

    《具身智能机器人系统》第1-6章阅读心得之具身智能机器人系统背景知识与基础模块

    意味着在“具身智能”领域,还没有哪个玩家能像O社那样能站在AGI的制高点。 具身智能从字面上拆解为“具身+智能”,指的是一种
    发表于 12-19 22:26