0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

基于KerasConv1D心电图检测开源教程

WpOh_rgznai100 来源:YXQ 2019-06-10 15:48 次阅读

本实战内容取自笔者参加的首届中国心电智能大赛项目,初赛要求为设计一个自动识别心电图波形算法。笔者使用Keras框架设计了基于Conv1D结构的模型,并且开源了代码作为Baseline。内容包括数据预处理,模型搭建,网络训练,模型应用等,此Baseline采用最简单的一维卷积达到了88%测试准确率。有多支队伍在笔者基线代码基础上调优取得了优异成绩,顺利进入复赛。

数据介绍

下载完整的训练集和测试集,共1000例常规心电图,其中训练集中包含600例,测试集中共400例。该数据是从多个公开数据集中获取。参赛团队需要利用有正常/异常两类标签的训练集数据设计和实现算法,并在没有标签的测试集上做出预测。

该心电数据的采样率为500 Hz。为了方便参赛团队用不同编程语言都能读取数据,所有心电数据的存储格式为MAT格式。该文件中存储了12个导联的电压信号。训练数据对应的标签存储在txt文件中,其中0代表正常,1代表异常。

赛题分析

简单分析一下,初赛的数据集共有1000个样本,其中训练集中包含600例,测试集中共400例。其中训练集中包含600例是具有label的,可以用于我们训练模型;测试集中共400例没有标签,需要我们使用训练好的模型进行预测。

赛题就是一个二分类预测问题,解题思路应该包括以下内容

数据读取与处理

网络模型搭建

模型的训练

模型应用与提交预测结果

实战应用

经过对赛题的分析,我们把任务分成四个小任务,首先第一步是:

1.数据读取与处理

该心电数据的采样率为500 Hz。为了方便参赛团队用不同编程语言都能读取数据,所有心电数据的存储格式为MAT格式。该文件中存储了12个导联的电压信号。训练数据对应的标签存储在txt文件中,其中0代表正常,1代表异常。

我们由上述描述可以得知,

我们的数据保存在MAT格式文件中(这决定了后面我们要如何读取数据)

采样率为500 Hz(这个信息并没有怎么用到,大家可以简单了解一下,就是1秒采集500个点,由后面我们得知每个数据都是5000个点,也就是10秒的心电图片)

12个导联的电压信号(这个是指采用12种导联方式,大家可以简单理解为用12个体温计量体温,从而得到更加准确的信息,下图为导联方式简单介绍,大家了解下即可。要注意的是,既然提供了12种导联,我们应该全部都用到,虽然我们仅使用一种导联方式也可以进行训练与预测,但是经验告诉我们,采取多个特征会取得更优效果)

数据处理函数定义:

import kerasfrom scipy.io import loadmatimport matplotlib.pyplot as pltimport globimport numpy as npimport pandas as pdimport mathimport osfrom keras.layers import *from keras.models import *from keras.objectives import *BASE_DIR = “preliminary/TRAIN/”#进行归一化def normalize(v): return (v - v.mean(axis=1).reshape((v.shape[0],1))) / (v.max(axis=1).reshape((v.shape[0],1)) + 2e-12)loadmat打开文件def get_feature(wav_file,Lens = 12,BASE_DIR=BASE_DIR): mat = loadmat(BASE_DIR+wav_file) dat = mat[“data”] feature = dat[0:12] return(normalize(feature).transopse())#把标签转成oneHot形式def convert2oneHot(index,Lens): hot = np.zeros((Lens,)) hot[index] = 1 return(hot)TXT_DIR = “preliminary/reference.txt”MANIFEST_DIR = “preliminary/reference.csv”

读取一条数据进行显示

if name__ == “__main”: dat1 = get_feature(“preliminary/TRAIN/TRAIN101.mat”) print(dat1.shape) #one data shape is (12, 5000) plt.plt(dat1[:,0]) plt.show()

我们由上述信息可以看出每种导联都是由5000个点组成的列表,12种导联方式使每个样本都是12*5000的矩阵,类似于一张分辨率为12x5000的照片。

我们需要处理的就是把每个读取出来,归一化一下,送入网络进行训练可以了。

标签处理方式

def create_csv(TXT_DIR=TXT_DIR): lists = pd.read_csv(TXT_DIR,sep=r“\t”,header=None) lists = lists.sample(frac=1) lists.to_csv(MANIFEST_DIR,index=None) print(“Finish save csv”)

我这里是采用从reference.txt读取,然后打乱保存到reference.csv中,注意一定要进行数据打乱操作,不然训练效果很差。因为原始数据前面便签全部是1,后面全部是0

数据迭代方式

Batch_size = 20def xs_gen(path=MANIFEST_DIR,batch_size = Batch_size,train=True):img_list = pd.read_csv(path)if train : img_list = np.array(img_list)[:500] print(“Found %s train items.”%len(img_list)) print(“list 1 is”,img_list[0]) steps = math.ceil(len(img_list) / batch_size) # 确定每轮有多少个batchelse: img_list = np.array(img_list)[500:] print(“Found %s test items.”%len(img_list)) print(“list 1 is”,img_list[0]) steps = math.ceil(len(img_list) / batch_size) # 确定每轮有多少个batchwhile True: for i in range(steps): batch_list = img_list[i * batch_size : i * batch_size + batch_size] np.random.shuffle(batch_list) batch_x = np.array([get_feature(file) for file in batch_list[:,0]]) batch_y = np.array([convert2oneHot(label,2) for label in batch_list[:,1]]) yield batch_x, batch_y

数据读取的方式我采用的是生成器的方式,这样可以按batch读取,加快训练速度,大家也可以采用一下全部读取,看个人的习惯了

2.网络模型搭建

数据我们处理好了,后面就是模型的搭建了,我使用keras搭建的,操作简单便捷,tf,pytorch,sklearn大家可以按照自己喜好来。

网络模型可以选择CNN,RNN,Attention结构,或者多模型的融合,抛砖引玉,此Baseline采用的一维CNN方式,一维CNN学习地址

模型搭建

TIME_PERIODS = 5000num_sensors = 12def build_model(input_shape=(TIME_PERIODS,num_sensors),num_classes=2): model = Sequential() #model.add(Reshape((TIME_PERIODS, num_sensors), input_shape=input_shape)) model.add(Conv1D(16, 16,strides=2, activation=‘relu’,input_shape=input_shape)) model.add(Conv1D(16, 16,strides=2, activation=‘relu’,padding=“same”)) model.add(MaxPooling1D(2)) model.add(Conv1D(64, 8,strides=2, activation=‘relu’,padding=“same”)) model.add(Conv1D(64, 8,strides=2, activation=‘relu’,padding=“same”)) model.add(MaxPooling1D(2)) model.add(Conv1D(128, 4,strides=2, activation=‘relu’,padding=“same”)) model.add(Conv1D(128, 4,strides=2, activation=‘relu’,padding=“same”)) model.add(MaxPooling1D(2)) model.add(Conv1D(256, 2,strides=1, activation=‘relu’,padding=“same”)) model.add(Conv1D(256, 2,strides=1, activation=‘relu’,padding=“same”)) model.add(MaxPooling1D(2)) model.add(GlobalAveragePooling1D()) model.add(Dropout(0.3)) model.add(Dense(num_classes, activation=‘softmax’)) return(model)

用model.summary()输出的网络模型为

训练参数比较少,大家可以根据自己想法更改。

3.网络模型训练

模型训练

if name__ == “__main”: “”“dat1 = get_feature(”TRAIN101.mat“) print(”one data shape is“,dat1.shape) #one data shape is (12, 5000) plt.plot(dat1[0]) plt.show()”“” if (os.path.exists(MANIFEST_DIR)==False): create_csv() train_iter = xs_gen(train=True) test_iter = xs_gen(train=False) model = build_model() print(model.summary()) ckpt = keras.callbacks.ModelCheckpoint( filepath=‘best_model.{epoch:02d}-{val_acc:.2f}.h5’, monitor=‘val_acc’, save_best_only=True,verbose=1) model.compile(loss=‘categorical_crossentropy’, optimizer=‘adam’, metrics=[‘accuracy’]) model.fit_generator( generator=train_iter, steps_per_epoch=500//Batch_size, epochs=20, initial_epoch=0, validation_data = test_iter, nb_val_samples = 100//Batch_size, callbacks=[ckpt], )

训练过程输出(最优结果:loss: 0.0565 - acc: 0.9820 - val_loss: 0.8307 - val_acc: 0.8800)

Epoch 10/2025/25 [==============================] - 1s 37ms/step - loss: 0.2329 - acc: 0.9040 - val_loss: 0.4041 - val_acc: 0.8700Epoch 00010: val_acc improved from 0.85000 to 0.87000, saving model to best_model.10-0.87.h5Epoch 11/2025/25 [==============================] - 1s 38ms/step - loss: 0.1633 - acc: 0.9380 - val_loss: 0.5277 - val_acc: 0.8300Epoch 00011: val_acc did not improve from 0.87000Epoch 12/2025/25 [==============================] - 1s 40ms/step - loss: 0.1394 - acc: 0.9500 - val_loss: 0.4916 - val_acc: 0.7400Epoch 00012: val_acc did not improve from 0.87000Epoch 13/2025/25 [==============================] - 1s 38ms/step - loss: 0.1746 - acc: 0.9220 - val_loss: 0.5208 - val_acc: 0.8100Epoch 00013: val_acc did not improve from 0.87000Epoch 14/2025/25 [==============================] - 1s 38ms/step - loss: 0.1009 - acc: 0.9720 - val_loss: 0.5513 - val_acc: 0.8000Epoch 00014: val_acc did not improve from 0.87000Epoch 15/2025/25 [==============================] - 1s 38ms/step - loss: 0.0565 - acc: 0.9820 - val_loss: 0.8307 - val_acc: 0.8800Epoch 00015: val_acc improved from 0.87000 to 0.88000, saving model to best_model.15-0.88.h5Epoch 16/2025/25 [==============================] - 1s 38ms/step - loss: 0.0261 - acc: 0.9920 - val_loss: 0.6443 - val_acc: 0.8400Epoch 00016: val_acc did not improve from 0.88000Epoch 17/2025/25 [==============================] - 1s 38ms/step - loss: 0.0178 - acc: 0.9960 - val_loss: 0.7773 - val_acc: 0.8700Epoch 00017: val_acc did not improve from 0.88000Epoch 18/2025/25 [==============================] - 1s 38ms/step - loss: 0.0082 - acc: 0.9980 - val_loss: 0.8875 - val_acc: 0.8600Epoch 00018: val_acc did not improve from 0.88000Epoch 19/2025/25 [==============================] - 1s 37ms/step - loss: 0.0045 - acc: 1.0000 - val_loss: 1.0057 - val_acc: 0.8600Epoch 00019: val_acc did not improve from 0.88000Epoch 20/2025/25 [==============================] - 1s 37ms/step - loss: 0.0012 - acc: 1.0000 - val_loss: 1.1088 - val_acc: 0.8600Epoch 00020: val_acc did not improve from 0.88000

4.模型应用预测结果

预测数据

if name__ == “__main”: “”“dat1 = get_feature(”TRAIN101.mat“) print(”one data shape is“,dat1.shape) #one data shape is (12, 5000) plt.plot(dat1[0]) plt.show()”“” “”“if (os.path.exists(MANIFEST_DIR)==False): create_csv() train_iter = xs_gen(train=True) test_iter = xs_gen(train=False) model = build_model() print(model.summary()) ckpt = keras.callbacks.ModelCheckpoint( filepath=‘best_model.{epoch:02d}-{val_acc:.2f}.h5’, monitor=‘val_acc’, save_best_only=True,verbose=1) model.compile(loss=‘categorical_crossentropy’, optimizer=‘adam’, metrics=[‘accuracy’]) model.fit_generator( generator=train_iter, steps_per_epoch=500//Batch_size, epochs=20, initial_epoch=0, validation_data = test_iter, nb_val_samples = 100//Batch_size, callbacks=[ckpt], )”“” PRE_DIR = “sample_codes/answers.txt” model = load_model(“best_model.15-0.88.h5”) pre_lists = pd.read_csv(PRE_DIR,sep=r“ ”,header=None) print(pre_lists.head()) pre_datas = np.array([get_feature(item,BASE_DIR=“preliminary/TEST/”) for item in pre_lists[0]]) pre_result = model.predict_classes(pre_datas)#0-1概率预测 print(pre_result.shape) pre_lists[1] = pre_result pre_lists.to_csv(“sample_codes/answers1.txt”,index=None,header=None) print(“predict finish”)

下面是前十条预测结果:

TEST394,0TEST313,1TEST484,0TEST288,0TEST261,1TEST310,0TEST286,1TEST367,1TEST149,1TEST160,1

展望

此Baseline采用最简单的一维卷积达到了88%测试准确率(可能会因为随机初始化值上下波动),大家也可以多尝试GRU,Attention,和Resnet等结果,测试准确率会突破90+。


声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 心电图
    +关注

    关注

    1

    文章

    74

    浏览量

    25161
  • 开源
    +关注

    关注

    3

    文章

    2985

    浏览量

    41718

原文标题:实战 | 基于KerasConv1D心电图检测开源教程(附代码)

文章出处:【微信号:rgznai100,微信公众号:rgznai100】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    用ADAS1000采集实际人体心电图的过程中,信号剧变的原因?如何处理?

    在用ADAS1000采集实际人体心电图的过程中,动一下导联线的夹子,信号会发生剧变,如下图示,有时候保持身体不动也会发生信号突变,而且经常是突变后,后面就会持续变化很长时间,即使身体保持不动。不过
    发表于 12-14 08:13

    研究人员创造一种六角形心电图贴片 实现遥感与数据传输功能

    导    语在《Applied Physics Reviews》期刊上,研究人员提出了一种新型可穿戴心电图贴片,旨在增强床旁诊断,检测心血管疾病并帮助评估整体心脏健康状况。该研究的重点在于利用有源
    的头像 发表于 12-13 16:44 234次阅读

    基于新型几何形状优化的可穿戴干电极心电图贴片

    在《Applied Physics Reviews》期刊上,研究人员提出了一种新型可穿戴心电图贴片,旨在增强床旁诊断,检测心血管疾病并帮助评估整体心脏健康状况。
    的头像 发表于 12-13 16:21 1523次阅读
    基于新型几何形状优化的可穿戴干电极<b class='flag-5'>心电图</b>贴片

    便携式心电图机_基于MT6735平台的手持心电图机方案

    便携式心电图机_基于MT6735平台的手持心电图机方案。采用MTK八核A53 CPU作为主控芯片。它配备了2GB+32GB(可选配4G+64G)的内存,支持2G/3G/4G全网通,同时也支持WiFi
    的头像 发表于 11-23 17:39 1608次阅读
    便携式<b class='flag-5'>心电图</b>机_基于MT6735平台的手持<b class='flag-5'>心电图</b>机方案

    心电图(ECG)和脑电图(EEG)应用快速参考指南

    电子发烧友网站提供《心电图(ECG)和脑电图(EEG)应用快速参考指南.pdf》资料免费下载
    发表于 11-16 16:29 4次下载
    <b class='flag-5'>心电图</b>(ECG)和脑电图(EEG)应用快速参考指南

    心电图(ECG)用放大器的设计注意事项

    电子发烧友网站提供《心电图(ECG)用放大器的设计注意事项.pdf》资料免费下载
    发表于 11-16 14:55 2次下载
    <b class='flag-5'>心电图</b>(ECG)用放大器的设计注意事项

    使用AD8233时,在输入端IN+和IN-使用不同材质的电极与人体接触,会影响心电图的质量吗?

    使用AD8233时,在输入端IN+和IN-使用不同材质的电极与人体接触,会影响心电图的质量吗?
    发表于 11-16 06:10

    ADI心电图(ECG)解决方案

    电子发烧友网站提供《ADI心电图(ECG)解决方案.pdf》资料免费下载
    发表于 11-08 15:57 1次下载
    ADI<b class='flag-5'>心电图</b>(ECG)解决方案

    使用ADAS1000系列模拟前端简化心电图(ECG)设计

    电子发烧友网站提供《使用ADAS1000系列模拟前端简化心电图(ECG)设计.pdf》资料免费下载
    发表于 11-08 15:53 0次下载
    使用ADAS1000系列模拟前端简化<b class='flag-5'>心电图</b>(ECG)设计

    简易心电图仪的设计

    电子发烧友网站提供《简易心电图仪的设计.pdf》资料免费下载
    发表于 10-18 10:54 1次下载
    简易<b class='flag-5'>心电图</b>仪的设计

    电压放大器在心电图中的作用是什么

    心电图是一种常用的临床检测方法,用于评估心脏的电活动。在进行心电图检测时,为了保证测量结果的准确性和可靠性,需要使用一种特殊的电压放大器,即心电
    的头像 发表于 10-07 16:12 262次阅读
    电压放大器在<b class='flag-5'>心电图</b>中的作用是什么

    基于虚拟仪器的胎儿心电提取实现与设计方案

    心电图是临床医生判断病人心脏健康状况的重要工具。胎儿心电图同样是决定孩子整个妊娠期和分娩期间健康状况的一个参数。胎儿心电图包括噪声和母亲心电图。本研究的主要目的是从混合信号中分离和提取
    发表于 09-19 08:05

    心电图机,基于MTK平台的便携式心电图机安卓主板设计方案

    便携式心电图机具备小巧便携和12导模式兼容的特点,可以与医疗信息系统(HIS)进行连接,实现患者信息共享。它可以无线发送采集的心电数据到心电判读平台,进行心电信号的判读、打印和数据存储
    的头像 发表于 09-04 19:41 605次阅读
    <b class='flag-5'>心电图</b>机,基于MTK平台的便携式<b class='flag-5'>心电图</b>机安卓主板设计方案

    基于STM32单片机的心电图系统设计

    通过血氧传感器和心电检测贴片进行心电采集与血氧饱和度采集,采集到的数据通过LCD进行显示并通过ESP8266上传到上位端,上位机端可以实时观测到心电图的变化曲线。
    的头像 发表于 07-25 11:04 984次阅读
    基于STM32单片机的<b class='flag-5'>心电图</b>系统设计

    国产铁电存储器PB85RS2MC在心电图机中的应用

    随着人们生活水平的提高,心血管疾病已成为危害人类生命健康的三大杀手之一,心电图机是心血管疾病诊断的有效工具一,该仪器能接收心脏产生的微弱电流(mv级),并记录心电图的仪器装置,是心脏病诊断和治疗中最常用、最简便的无创性检查手段。
    的头像 发表于 06-15 10:08 278次阅读
    国产铁电存储器PB85RS2MC在<b class='flag-5'>心电图</b>机中的应用