0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

GaN为何能在5G射频挑战中脱颖而出

Qorvo半导体 来源:未知 作者:胡薇 2018-11-13 16:19 次阅读

如今,电子业正迈向4G的终点、5G的起点。 后者发展上仍有不少进步空间,但可以确定,新一代无线电网络势必需要更多组件、更高频率做支撑。对此,市研机构Yole发布的「2017年RF功率市场与科技报告」指出,RF功率市场可望以将近二位数的年复合成长率(GAGR)迅速成长;同时,氮化镓(GaN)将逐渐取代横向扩散金属氧化物半导体(LDMOS),成为市场主流技术。

不同材料的能隙与击穿电压对比

现行GaN功率元件以GaN-on-SiC及GaN-on-Si两种晶圆进行制造,其中GaN-on-SiC强调适合应用在高温、高频的操作环境,因此在散热性能上具优势,其以5G基地台应用最多,预期SiC基板未来在5G商用带动下,具有庞大市场商机。

典型GaN射频器件的工艺流程

典型的GaN射频器件的加工工艺主要包括如下环节:外延生长-器件隔离-欧姆接触(制作源极、漏极)-氮化物钝化-栅极制作-场板制作-衬底减薄-衬底通孔等环节。

外延生长

采用金属氧化物化学气相沉积(MOCVD)或分子束外延(MBE)方式在SiC或Si衬底上外延GaN材料。

器件隔离

采用离子注入或者制作台阶(去除掉沟道层)的方式来实现器件隔离。射频器件之间的隔离是制作射频电路的基本要求。

欧姆接触

形成欧姆接触是指制作源极和漏极的电极。对GaN材料而言,制造欧姆接触需要在很高的温度下完成。

氮化物钝化

在源极和漏极制作完成后,GaN半导体材料需要经过钝化过程来消除悬挂键等界面态。GaN的钝化过程通常采用SiN(氮化硅)来实现。

栅极制作

在SiN钝化层上开口,然后沉积栅极金属。至此,基本的场效应晶体管的结构就成型了。

场板制作

栅极制作完成后,继续沉积额外的几层金属和氮化物,来制作场板、互连和电容,此外,也可以保护器件免受外部环境影响。

衬底减薄

衬底厚度减薄至100μm左右,然后对减薄后的衬底背部进行金属化。

衬底通孔

通孔是指在衬底上表面和下表面之间刻蚀出的短通道,用于降低器件和接地(底部金属化层)之间的电感。

5G高频特性,GaN技术伸展空间巨大

目前基地台用功率放大器(Power Amplifier,PA)主要为基于硅的横向扩散金属氧化物半导体LDMOS技术,不过LDMOS技术仅适用于低频段,在高频应用领域存在局限性。

换言之,GaN优势在于更高功率密度及更高截止频率(Cutoff Frequency,输出讯号功率超出或低于传导频率时输出讯号功率的频率),尤其在5G多输入多输出(Massive MIMO)应用中,可实现高整合性解决方案,例如模块化射频前端元件,以毫米波(Millimeter Wave,mmWave)应用为例,GaN高功率密度特性可有效减少收发通道数及尺寸,实现高性能目标,然短期LDMOS会与GaN共存,主要原因在于低频应用仍会采用LDMOS,例如2GHz以下应用领域。

通常来说,采用GaN技术可降低天线阵列功耗,透过整合式多通道模块、3~6GHz及28/39GHz频段在射频前端产品的布局,更加强调高性能、低功耗、高整合度、高易用性等目标达成。

Qorvo3月推出的GaN-on-SiC晶体管QPD1025来看,其无需结合放大器的复杂操作便可实现数千瓦的解决方案,能够大幅节省客户的时间和成本。与LDMOS相比,QPD1025的漏极效率有了显著提升,效率高出近15个百分点。

由于GaN具有更高功率密度特性,能实现更小元件封装,满足Massive MIMO和主动天线单元(Active Antenna Unit,AAU)技术下射频前端高度整合需求。目前GaN运用以5G基础设施(如基地台)为主,手机较难采用GaN技术。主要挑战包括:

(1)GaN成本高;

(2)GaN供电电压高;

无论如何,GaN已成为高频、大功耗应用技术首选,包括需高功率水平的传输讯号或长距离应用,例如基地台收发器、雷达、卫星通信等。Qorvo提供业内种类最多、最具创意的GaN-on-SiC产品组合,其产品具有高功率密度、小尺寸、增益出色、高可靠性和工艺成熟的特点,早在2000年就开始批量生产。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • GaN
    GaN
    +关注

    关注

    19

    文章

    1744

    浏览量

    67187
  • 5G
    5G
    +关注

    关注

    1340

    文章

    47733

    浏览量

    553100

原文标题:解决5G射频挑战,GaN为何能脱颖而出?

文章出处:【微信号:Qorvo_Inc,微信公众号:Qorvo半导体】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    美格智能联合罗德与施瓦茨完成5G RedCap模组SRM813Q验证,推动5G轻量化全面商用

    智能5G RedCap模组SRM813Q的射频和吞吐量性能,展现了美格智能在无线通信模组领域领先的技术实力和创新能力。 罗德与施瓦茨是全球领先的测试与测量解决方案供应商,在测试与测量、信息技术和通信
    发表于 02-27 11:31

    历史中的佼佼者,FPGA为何能脱颖而出

    数字电路有两大类:组合电路和时序电路,时序电路即“组合电路+存储”。所有组合电路都有对应的真值表,FPGA的可编程逻辑块中的LUT,本质上是一个对应真值表输出的查找表,可以完成任意组合电路的功能。
    发表于 02-21 12:33 122次阅读

    5G 外置天线

    5G外置天线 新品介绍 5G圆顶天线和Whip天线旨在提供617 MHz至6000 MHz的宽带无缝高速互联网接入连接解决方案。这些天线的特点是高增益,即使在具有挑战性的环境也能
    发表于 01-02 11:58

    4G/5G MiMo鲨鱼鳍#天线 解决方案#无线通信 #射频与天线 #通信 #5G #移动通信网络

    射频移动通信5G
    虹科卫星与无线电通信
    发布于 :2023年12月15日 18:03:22

    NVG002F语音芯片:低功耗 宽电压工作与可重复烧写脱颖而出

    在芯片日益发展的时期,为满足用户的需求,九芯一款具有颇高竞争力的语音芯片-NVG002F出现在市场上。这款芯片低成本、生产周期短,适合大中小型批量生产以及在2.4V~5.2V宽电压范围内工作的特性,特别是可重复烧写的特点,在语音芯片市场中脱颖而出
    的头像 发表于 11-29 15:59 190次阅读

    STM32为何在诸多的单片机中脱颖而出

    STM32为何在诸多的单片机中脱颖而出
    的头像 发表于 10-19 18:05 265次阅读
    STM32<b class='flag-5'>为何</b>在诸多的单片机中<b class='flag-5'>脱颖而出</b>?

    橙群微电子NanoBeacon SoC 在 &amp;quot;Truly Innovative Electronics &amp;quot;评选中脱颖而出

    InPlay我们的#NanoBeaconSoC产品在ElectronicsForYou的"TrulyInnovativeElectronics"评选中脱颖而出
    的头像 发表于 08-18 08:32 377次阅读
    橙群微电子NanoBeacon SoC 在  &amp;quot;Truly Innovative Electronics &amp;quot;评选中<b class='flag-5'>脱颖而出</b>

    企业数字化办公,华为云 WeLink 为何能脱颖而出

    平台中,华为云 WeLink 凭借其安全、开放、智能的特点脱颖而出。它提供了一站式的办公协同解决方案,帮助企业实现全场景智能办公,让企业无边界协同。下面,我们将详细介绍华为云 WeLink 办公协同解决方案的优势和特点。 华为云 WeLin
    的头像 发表于 07-03 22:32 510次阅读

    5G NR RRC协议解析

      基于TS38.331描述,在5G系统,网络会基于以下三种情况会触发寻呼。   1)gNB触发寻呼,通知UE系统消息发生修改   2)gNB触发寻呼,寻呼RRC_Inactive UE   3
    发表于 05-08 15:53

    5G毫米波有哪些优势?

    得到了充分检验。其次,在5G标准化5G毫米波波束管理成为5G毫米波标准化的工作重点,其中包括波束搜索、波束跟踪以及波束切换等,使5G毫米
    发表于 05-05 10:49

    5G射频前端由哪几部分组成?

    、发射通道之间的切换;   e)双工器负责准双工切换、接受/发送通道的射频信号滤波;   f)调谐器负责射频信号的信道选择、频率变化和放大。   在5G时代,信号频段数量大幅增加,随之需要的组成部件数量也
    发表于 05-05 10:42

    C波段频谱对5G的重要性

      1.前言   同步是通信系统最关键的功能之一。然而,在5G的环境,特别是对于上行链路和下行链路传输在同一频率上的时分双工(TDD),干扰的可能性要大得多。因此,我们看到了TDD-LTE
    发表于 05-05 10:36

    哪些毫米波频率会被5G采用呢?

      射频系统目前在生活的应用很多,在未来也有很好的发展潜力。随着世界标准化机构着手定义下一代无线网络,5G的愿景正在迫使研究人员改变他们的思考方式。5G
    发表于 05-05 09:52

    5G网络架构,5G的SDR和SDN是什么?

    都有一个BBU,并通过BBU直接连到核心网。而在5G网络,接入网不再是由BBU、RRU、天线这些东西组成了。而是被重构为以下3个功能实体:CU(CentralizedUnit,集中单元),DU
    发表于 05-05 09:48

    功率放大器在5G的作用是什么

    (RF) 硬件产生了更大的压力,并提出了更严格的要求。功率放大器 (PA) 是射频硬件中非常重要的部件之一,随着 5G 的普及,它的重要性不断提升。为了帮助缓解为 5G 设计射频放大
    发表于 05-05 09:38