0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

MIT团队在微芯片上模拟神经元和肌肉 积极寻找渐冻症治疗的方法

dKBf_eetop_1 来源:网络整理 作者:工程师谭军 2018-10-12 09:21 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

一场风靡全球的“冰桶挑战”曾将“渐冻症”(肌萎缩侧索硬化,ALS)带入众人的视线。当神经细胞逐渐失去对肌肉的控制,患者全身肌肉会逐渐萎缩,吞咽困难,最后呼吸衰竭。

“渐冻人”发病后平均寿命仅有2到4年,像霍金那样长期与病魔搏斗的患者可谓奇迹。不幸的是,人类迄今未找到ALS的病因,遑论给出对症之药。

美国麻省理工学院(MIT)的一个团队10月11日在《科学进展》上报告了一种在微流控芯片上制作神经和肌肉组织的3D模型的方法。借助这种“芯片器官”,他们观察到健康神经元与“渐冻”神经元的惊人差异,并试验了两款仍在临床测试阶段的新药。

仅有少部分“渐冻症”与遗传缺陷相关,而90%的散发性案例发病原因仍是未解之谜。正因如此,极少数获美国食品药品监督管理局(FDA)批准上市的“抗冻”药品都并非完全对症。科学家们继续突破动物模型的限制,找到分析病理和临床试验的更优方法。

冰桶挑战

其中,运动神经元和肌肉细胞之间的连接处,即肌肉神经接头,是模拟“渐冻症”的关键。数十年来,科学家们受限于2D模型结构。

2016年,MIT机械和生物工程教授罗杰·卡姆(Roger Kamm)团队用微流控芯片技术首次做出了鼠类肌肉神经接头的3D模型。这是一种在微米尺度的芯片中模拟人体环境,集成基本操作单元,自动完成分析全过程的技术。

他们将神经元和肌肉纤维分置于芯片上相邻的两个隔室内。神经元会逐渐延展出常常的神经突,最终与绕在两个柔性柱子上的肌肉纤维连接。

这些神经元用光遗传技术编辑过,能在光照控制下刺激肌肉收缩。通过观察两个柔性柱子的位移情况,研究人员就能测量肌肉收缩的力度。

在此次发表的成果中,卡姆团队用人类神经元与肌肉细胞进行代替。这些神经元一部分由健康人群的诱导性多能干细胞(iPSCs)分化而来,一部分由散发性ALS患者的诱导性多能干细胞分化而来。

实验结果显示,“渐冻症”组的神经元生长神经突的速度更慢,也无法与肌肉纤维建立强有力的连接。此外,神经元退化和肌肉细胞死亡的数量也更多。

“我们可以看到,健康的神经元直扑肌小管而去,并激活了它们。然而,ALS神经元似乎无法很好地建立连接。”卡姆说道。

“芯片器官”:绿色部分为渐冻症患者诱导性多能干细胞分化而成的运动神经元,紫色部分为肌肉组织。

两周之后,ALS运动神经元对肌肉建立起的控制力,仅有健康神经元的四分之一。

展示“芯片器官”能有效模拟“渐冻症”之后,卡姆团队开始探索这个模型的试药能力。

他们选择了两款仍处于临床测试阶段的新药雷帕霉素(Rapaycin)和伯舒替尼(Bosutinib)。在“芯片器官”上模拟的结果显示,两款药物都能帮助肌肉在运动神经元的刺激下收缩,并提高神经元的存活率。更重要的是,两款药物各自穿透血-脑屏障(毛细血管壁与神经胶质细胞形成的血浆与脑细胞之间的屏障)的能力有限,但同时施用时均能有效地穿透屏障。

目前,卡姆团队正在与当地的生物技术企业合作,计划收集1000名“渐冻人”的诱导性多能干细胞,在“芯片器官”上进行大规模药物试验。

他们也打算对模型本身进行升级,使其一方面能同时容纳更多的测样,另一方面能支持在神经系统中的其他细胞类型,比如雪旺细胞和小胶质细胞。


声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 芯片
    +关注

    关注

    462

    文章

    53562

    浏览量

    459370
  • 3D模型
    +关注

    关注

    1

    文章

    79

    浏览量

    16810

原文标题:MIT团队在微芯片上模拟神经元和肌肉

文章出处:【微信号:eetop-1,微信公众号:EETOP】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    如何真正意义有效无创神经调控?

    HUIYING(ALS)的机理概述ALS是一种进行性神经退行性疾病,其核心病理机制是上层及下层运动神经元的选择性死亡,导致
    的头像 发表于 11-15 12:57 160次阅读
    <b class='flag-5'>渐</b><b class='flag-5'>冻</b><b class='flag-5'>症</b>如何真正意义有效无创<b class='flag-5'>神经</b>调控?

    神经元设备和脑机接口有何渊源?

    HUIYING神经元设备的发展历程概述神经元设备的发展经历了从基础信号检测到多功能智能集成的演进过程。自1920年代脑电图(EEG)信号首次被发现以来,神经电极技术逐步发展,如1957年出现的钨
    的头像 发表于 11-03 18:03 1168次阅读
    <b class='flag-5'>神经元</b>设备和脑机接口有何渊源?

    脉冲神经元模型的硬件实现

    息电位 vrest。 LIF神经元模型在生物可解释性低于其他模型,只体现了神经元计算的关键特性,并不能够解释真实神经元的脉冲是如何生成,也不包括丰富的
    发表于 10-24 08:27

    SNN加速器内部神经元数据连接方式

    神经元之间的信息传递。 脉冲神经网络中,每个神经元都有其自身的地址,用于AER协议中进行通信。如图,时间从右往左依次增加,当某一个
    发表于 10-24 07:34

    AI新闻:OpenAI将在阿根廷投资250亿美元 脑机接口让患者成功自主进食

    数据中心项目,投资规模高达250亿美元。这是南美地区史上最大科技投资之一。 目前,OpenAI已经与能源公司Sur Energy签署了一份意向书;并已将该项目纳入阿根廷的 “大型投资激励制度” 框架内。 脑机接口让患者成功
    的头像 发表于 10-15 14:57 720次阅读

    液态神经网络(LNN):时间连续性与动态适应性的神经网络

    神经元,但却能产生复杂的行为。受此启发,与传统的神经网络相比,LNN旨在通过模拟大脑中神经元之间的动态连接来处理信息,这种网络能够顺序处理数据,并且保留了对过去输
    的头像 发表于 09-28 10:03 710次阅读
    液态<b class='flag-5'>神经</b>网络(LNN):时间连续性与动态适应性的<b class='flag-5'>神经</b>网络

    【「AI芯片:科技探索与AGI愿景」阅读体验】+神经形态计算、类脑芯片

    几年神经元计算及类脑芯片的重大进展。 一、云端使用的神经形态计算与类脑芯片 神经形态计算旨在设计和构建包括硬件和软件在内的计算机系统,通过
    发表于 09-17 16:43

    类脑视觉芯片里程碑突破:复旦团队首创二维半导体DRAM仿生神经元

    类脑视觉芯片领域,复旦大学的研究团队取得了令人瞩目的突破,他们联合研发出了基于二维半导体DRAM的仿生神经元。这一成果为类脑计算与视觉处理的融合发展带来了新的曙光,有望革新当前人工智
    的头像 发表于 08-15 17:00 754次阅读
    类脑视觉<b class='flag-5'>芯片</b>里程碑突破:复旦<b class='flag-5'>团队</b>首创二维半导体DRAM仿生<b class='flag-5'>神经元</b>

    新一代神经拟态类脑计算机“悟空”发布,神经元数量超20亿

    拟态芯片的类脑计算机,神经元数量接近猕猴大脑规模,典型运行状态下功耗仅约2000瓦。传统计算机处理人脑任务需高达100兆瓦功耗,相比之下“悟空”低功耗优势显著。     硬件,“悟空”由15台刀片式
    的头像 发表于 08-06 07:57 7286次阅读
    新一代<b class='flag-5'>神经</b>拟态类脑计算机“悟空”发布,<b class='flag-5'>神经元</b>数量超20亿

    无刷直流电机单神经元自适应智能控制系统

    摘要:针对无刷直流电机(BLDCM)设计了一种可在线学习的单神经元自适应比例-积分-微分(PID)智能控制器,通过有监督的 Hebb学习规则调整权值,每次采样根据反馈误差对神经元权值进行调整,以实现
    发表于 06-26 13:36

    无刷直流电机单神经元PI控制器的设计

    摘要:研究了一种基于专家系统的单神经元PI控制器,并将其应用于无刷直流电机调速系统中。控制器实现了PI参数的在线调整,具有PID控制器良好动态性能的同时,减少微分项对系统稳态运行时的影响,并较好
    发表于 06-26 13:34

    ADI人形机器人的“感觉神经 + 电力神经元”核心芯片方案盘点

    作为全球领先的模拟/混合信号芯片公司,凭借其 传感器、信号链、精密模拟、功率管理与接口技术 方面的深厚积累,已成为人形机器人核心组件方案的重要供应商。 人形机器人核心模块中ADI的贡
    的头像 发表于 06-17 13:41 2296次阅读

    经颅电刺激适应之tDCS治疗注意力缺陷ADHD

    沉重负担。近十年神经影像学发现,各年龄段人群大脑,特别是儿童和青少年的大脑具有高可塑性。tDCS可通过刺激前额叶皮层的异常神经元缓解ADHD症状,具有潜在的长期神经可塑
    的头像 发表于 04-22 19:49 143次阅读
    经颅电刺激适应<b class='flag-5'>症</b>之tDCS<b class='flag-5'>治疗</b>注意力缺陷ADHD

    人工神经网络的原理和多种神经网络架构方法

    所拟合的数学模型的形式受到大脑中神经元的连接和行为的启发,最初是为了研究大脑功能而设计的。然而,数据科学中常用的神经网络作为大脑模型已经过时,现在它们只是能够某些应用中提供最先进性能的机器学习模型。近年来,由于
    的头像 发表于 01-09 10:24 2269次阅读
    人工<b class='flag-5'>神经</b>网络的原理和多种<b class='flag-5'>神经</b>网络架构<b class='flag-5'>方法</b>

    请问ADS1298称为生理信号测量转换器,和传统AD转换器有什么区别?

    请问ADS1298称为生理信号测量转换器,和传统AD转换器有什么区别。我想使用其作为神经元肌肉细胞信号的检测,精度要达到0.1mV以下,不知道是否合适。
    发表于 01-01 06:39