0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

976nm泵浦源的光纤激光器光光转化效率可达85%

MEMS 来源:未知 作者:胡薇 2018-06-14 14:56 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

工业光纤激光器市场发展迅猛,未来五到十年这种势头将继续保持,作为其核心部件的半导体激光器需要重新审视。

中低功率光纤激光器市场竞争激烈,高功率光纤激光器市场亟待开发。

随着中低功率光纤激光器(输出功率1500瓦以下)的产品同质化日益严重,市场竞争日渐激烈,不少技术领先的光纤激光器厂家纷纷开始将目光投向高功率光纤激光器(输出功率1500瓦以上)市场,希望获得更大的成功。以往使用915nm波段的半导体激光器作为光纤激光器的泵浦源,尽管915nm激光器存在0.3nm/℃的波长温度漂移系数,由于增益有源光纤在915nm波段的吸收峰较宽,激光器泵浦源受环境温度影响的中心波长漂移对增益光纤的吸收效率影响不大,光纤激光器整机对工作环境温度不敏感。因此915nm波段泵浦方案在中低功率光纤激光器市场得到广泛认可。

915nm波段泵浦方案在高功率光纤激光器开发中存在局限。

在设计高功率光纤激光器方案时,按以往的思路使用915nm泵浦源的弊端开始凸显。由于在915nm波段增益有源光纤的吸收效率低,为达到整机光纤激光器输出更高功率目的,在技术上要求使用更高的915nm泵浦功率和更长的有源光纤,这将导致开发者不得不面对光纤非线性效应、光光效率损失、热管理难度增加、单位瓦数成本上升等诸多困难。当输出功率超过一定水平时,915nm泵浦方案将变得极为复杂而最终失效。因此高功率光纤激光器需要更加有效的工业泵浦方案。

使用长光华芯976nm泵浦源的光纤激光器光光转化效率可达85%。

使用976nm波段泵浦方案将很好得解决上述在高功率光纤激光器开发中将面临的问题。增益有源光纤对976nm波段泵浦光的吸收效率是915nm波段泵浦光的2-3倍(如图1):由于吸收效率更高,增益有源光纤长度更短,光纤非线性效应更低,同样也节约了部分材料成本。

图1掺镱光纤吸收与激射光谱

在同样的泵浦功率输入情况下,经在光纤激光器行业领先的多家第三方验证,光光转换效率在更换长光华芯的非波长锁定976nm泵源后在工作条件下增加了10%,达到了85%(如图2):这意味着开发者在对泵浦光的投资回报率提高了10%,在利润弥足珍贵的今天,这将会是巨大竞争优势。

图2 915/976nm泵浦掺镱光纤斜效率对比

976nm芯片相比915nm芯片具有更高可靠性。

就半导体激光器本身而言,976nm波段芯片比915nm波段芯片更可靠,预期寿命更长。尽管GaAs外延晶体材料在915nm波段有稍好的光电转换效率,由于976nm波长更长,光子能量更低,提高了高亮度半导体激光芯片在大电流工作条件下的腔面损伤阈值。换句话说,976nm波段芯片相对915nm波段芯片发生腔面光学灾变性损伤(COD)的概率更低,芯片本身更加可靠。因此作为核心器件的976nm波段半导体激光器泵浦源也提高了光纤激光器整机的可靠性和预期寿命。

以往976nm泵浦源应用于工业光纤激光器,整机受环境温度影响大。

在科研市场,使用976nm开发高功率乃至万瓦级的光纤激光器应用已比较成熟。在工业市场,976nm泵浦源开发高功率光纤激光器才刚开始普及。

以往制约976nm泵浦源工业应用的原因主要还是增益有源光纤在976nm波段的吸收峰较窄:在工作环境温度变化时,泵浦源中心波长的漂移造成增益有源光纤吸收率大幅变化,容易导致光纤激光器整机性能指标波动。工业使用环境复杂,过去中低功率光纤激光器中往往采用风冷对泵浦源进行冷却,温度控制能力有限。作为妥协,开发者主动或被迫采用了吸收峰较宽,但吸收效率更低的915nm波段,来降低环境温度变化对整机性能的影响。采用VBG波长锁定的976nm泵浦源由于成本偏高,一般用于科研目的,大规模工业推广尚不被接受。

现在976nm泵浦源应用于高功率光纤激光器已无技术障碍,方案已经批量验证。

不同的是,高功率光纤激光器基本使用工业水冷机进行强制水循环制冷,即使使用非波长锁定的976nm泵浦源,现有水冷机的制冷功率、温度控制水平和使用成本已经完全满足了光纤激光器对泵浦源温度控制的要求。由于976nm波段有更高的光光转换效率,激光器整机排热量更少,事实上系统热管理的压力更小。

经过一年半在多家第三方处的应用示范验证表明,工业市场高光纤激光器使用长光华芯的非波长锁定976nm泵浦源,不存在技术与成本上的应用障碍,环境温度对系统整机性能上的影响微弱可控,在性价比上具有强大的竞争优势。

长光华芯976nm泵浦源指标先进,性能稳定可靠,通过市场验证,批量供应市场。

图3 135μm 160W测试数据

图4 105μm 130W测试数据

图5 200μm 800W测试数据

图6 105μm 130W 波长锁定测试数据

长光华芯的高亮度976nm光纤耦合模块,采用长光华芯量产的976nm单管芯片,通过精密的光学封装和严苛的工艺过程控制,实现高亮度的光纤耦合输出:目前105μm光纤最高输出160瓦(如图4),135μm光纤最高输出200瓦(如图3),200μm光纤最高可达800瓦(如图5),实际NA测试95%达0.18;中心波长可以控制在±2个纳米,光谱宽度小于5纳米。经过近两年的市场培育验证与持续迭代改进,该系列976nm产品已经在稳定大批量供应光纤激光器市场。长光华芯也提供波长锁定的976nm光纤耦合模块,105μm光纤最高输出130瓦(如图6),实际NA测试95%小于0.18。

976nm泵浦方案优势明显,逐步将成为市场主流。

总之,976nm波段半导体激光器应用于工业市场高功率光纤激光器,由于消除了光纤非线性效应,实现了近85%的光光转换效率,整机系统受环境温度影响微弱,半导体激光器本身可靠性更高等诸多优点,将越来越受到重视和欢迎。从长远来看,随着976nm光纤耦合模块的规模应用,相信产品技术水平会不断提高,在元器件上实现低成本的976nm波长锁定也将会成为现实。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 光纤激光器
    +关注

    关注

    12

    文章

    190

    浏览量

    20939

原文标题:976nm泵浦光纤激光器达到85%光光效率

文章出处:【微信号:MEMSensor,微信公众号:MEMS】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    脉锐光电1064nm单频窄线宽光纤激光器介绍

    脉锐光电1064nm单频窄线宽光纤激光器采用光纤DFB激光腔结构,输出波长1064nm波段的单纵
    的头像 发表于 11-28 16:35 699次阅读
    脉锐光电1064<b class='flag-5'>nm</b>单频窄线宽<b class='flag-5'>光纤</b><b class='flag-5'>激光器</b>介绍

    使用平行型子环腔的 23 KHz 线宽 1064 nm SOA 光纤激光器

    旋转效应,当驱动电流为400mA时,激光器在一小时的测试期间表现出0.204 dB的最大功率偏差和0.012nm的波长偏差。此外,利用延迟自外差测量系统,我们测量了自制光纤
    的头像 发表于 10-09 15:12 337次阅读
    使用平行型子环腔的 23 KHz 线宽 1064 <b class='flag-5'>nm</b> SOA <b class='flag-5'>光纤</b><b class='flag-5'>激光器</b>

    掺铒光纤放大器

    > 40 dB (具体值需看手册,例如可能为 45 dB) | | 噪声系数 | 典型值 | 输入/输出接口 | FC/APC (单模,蓝色接头) | | 激光器 | 采用高功率多模
    的头像 发表于 09-12 16:54 728次阅读
    掺铒<b class='flag-5'>光纤</b>放大器

    全面升级!度亘推出793nm高功率光纤耦合模块系列——基于高功率高亮度芯片助力2μm激光器技术升级 !

    系列,以度亘高功率半导体激光芯片为核心,为2μm激光器技术发展注入新动能,助力高功率2μm掺铥光纤
    的头像 发表于 09-09 20:08 1128次阅读
    全面升级!度亘推出793<b class='flag-5'>nm</b>高功率<b class='flag-5'>光纤</b>耦合模块系列——基于高功率高亮度芯片助力2μm<b class='flag-5'>激光器</b><b class='flag-5'>泵</b><b class='flag-5'>浦</b>技术升级 !

    “芯”耀时刻 | 度亘核芯再度荣获维科杯“2025最佳半导体激光器技术创新奖”!

    模块”在一众产品中脱颖而出,再度荣获“维科杯·OFweek2025激光行业年度最佳半导体激光器技术创新奖”!获奖产品高效率轻量化
    的头像 发表于 08-04 09:03 1189次阅读
    “芯”耀时刻 | 度亘核芯再度荣获维科杯“2025最佳半导体<b class='flag-5'>激光器</b>技术创新奖”!

    激光器种类及特点

    反转,如红宝石激光器、染料激光器等。优点是效率较高,可获得较高的激光输出功率;缺点是需要额外
    的头像 发表于 07-03 06:45 954次阅读
    <b class='flag-5'>激光器</b>种类及特点

    上海光机所在同步超快拉曼光纤激光器方面取得进展

    图1 GSD同步拉曼光纤激光器实验装置示意图 近期,中国科学院上海光学精密机械研究所空天激光技术与系统部周佳琦研究员团队,在同步
    的头像 发表于 07-02 06:38 291次阅读
    上海光机所在同步<b class='flag-5'>泵</b><b class='flag-5'>浦</b>超快拉曼<b class='flag-5'>光纤</b><b class='flag-5'>激光器</b>方面取得进展

    度亘核芯单模808nm半导体填补国内空白,全球领先

    紧凑型光纤激光器提供可靠核心动力。作为掺钕增益介质(如Nd:YAG、Nd:YVO₄)的首选波长,808nm单模
    的头像 发表于 07-01 08:11 1182次阅读
    度亘核芯单模808<b class='flag-5'>nm</b>半导体<b class='flag-5'>泵</b><b class='flag-5'>浦</b><b class='flag-5'>源</b>填补国内空白,全球领先

    光纤激光器激光玻璃打孔工艺的应用有哪些?

    一、引言 随着激光技术的不断创新,光纤激光器以其独特的性能优势在激光玻璃打孔工艺中崭露头角。深入探究光纤
    的头像 发表于 06-04 11:15 524次阅读
    <b class='flag-5'>光纤</b><b class='flag-5'>激光器</b>在<b class='flag-5'>激光</b>玻璃打孔工艺的应用有哪些?

    浅谈光纤激光器的工作原理

    光纤激光器是一种放大介质为光纤激光器。它是一个需要供电的有源模块(就像电子产品中的有源电子元件),它利用了稀土离子的光放大特性。
    的头像 发表于 05-13 15:34 1847次阅读
    浅谈<b class='flag-5'>光纤</b><b class='flag-5'>激光器</b>的工作原理

    在3μm波段气体光纤激光器实现3.9W单频功率输出、斜效率突破35%

    :1混气以光纤长度为函数的模拟结果。 近期,中国科学院上海光学精密机械研究所先进激光与光电功能材料部特种玻璃与光纤研究中心团队,创新开展缓冲气体提升乙炔填充的空芯光纤气体
    的头像 发表于 04-28 06:25 452次阅读
    在3μm波段气体<b class='flag-5'>光纤</b><b class='flag-5'>激光器</b>实现3.9W单频功率输出、斜<b class='flag-5'>效率</b>突破35%

    半导体激光器波长选择指南

    激光锡焊中,不同波长适合不同的焊接材料和应用场景。具体选择915nm还是976nm波长,需综合考虑材料吸收率、工艺需求及设备性能,松盛光电将汇总一些关键分析及建议。
    的头像 发表于 02-24 16:11 936次阅读
    半导体<b class='flag-5'>激光器</b>波长选择指南

    激光焊锡波长怎么选择

    激光焊锡技术中,选择915nm976nm的波长主要是基于锡对这些波长的激光具有良好的吸收特性。在激光焊接过程中,
    的头像 发表于 02-24 14:35 996次阅读
    <b class='flag-5'>激光</b>焊锡波长怎么选择

    DLP9500UV在355nm纳秒激光器应用的损伤阈值是多少?

    DLP9500UV在355nm纳秒激光器应用的损伤阈值是多少,480mW/cm²能否使用,有没有在355nm下的客户应用案例? 这个是激光器的参数:355
    发表于 02-20 08:42

    半导体激光器光纤激光器的对比分析

    半导体激光器光纤激光器是现代激光技术中的两种重要类型,它们在结构、工作原理、性能及应用领域等方面有着显著的区别。本文将从增益介质、发光机理、散热性能、输出特性及应用领域等多个方面,对
    的头像 发表于 02-03 14:18 2433次阅读