0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

GAN对于人工智能的意义是什么?

mK5P_AItists 来源:未知 作者:胡薇 2018-04-23 17:49 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

GAN对于人工智能的意义,可以从它名字的三部分说起:Generative Adversarial Networks。为了方便讲述,也缅怀过去两周在某论坛上水掉的时间,我先从Networks讲起。

Networks:(深度)神经网络

自从12年AlexNet横空出世后,神经网络俨然已成为现在learning的主流。比起贝叶斯学派的强先验假设(priori),SVM在核函数(kernel)上的反复钻研,神经网络不需要科研者过多关注细节,只需要提供好海量的数据和设置好超参数,便能达到不错的效果。用武侠小说的方式来说,便是各大门派高手潜心十余载修炼一阳指/九阴真经/麒麟臂等神功,比试时却发现有一无名小卒内力浩瀚如海,出手虽毫无章法可言,但在内功的加持下,轻松打得众人抬不起头。

Deep系列的算法不仅在众多benchmark上霸据榜首,其衍生应用也给人工智能带来了一股新的浪潮,例如创作艺术品(Gatys 的 Neural Alorightm for Artistic Style),AlphaGo(CNN估值 + 蒙特卡洛剪枝),高质量的机器翻译(Attention + seq2seq)等等。这些衍生应用在部分任务上,已经能媲美人类中的专家,让人不禁浮想强人工智能(strong AI)的到来。然而,纵使深度网络(Deep Neural Networks)再强大,它也有自己的局限,生成模型上的不尽人意便是其中之一。

Generative(Model):生成模型

机器学习的模型可大体分为两类,生成模型(Generative Model)和判别模型(Discriminative Model)。判别模型需要输入变量,通过某种模型来预测。生成模型是给定某种隐含信息,来随机产生观测数据。举个简单的例子,

判别模型:给定一张图,判断这张图里的动物是猫还是狗

生成模型:给一系列猫的图片,生成一张新的猫咪(不在数据集里)

众所周知的imagenet-1000图像分类,自动驾驶的图片语义分割,人体骨架点的预测都属于判别模型,即给定输入预测某种特征。实际上12~14年的大部分工作都属于判别模型,为什么呢,原因之一便是判别模型的损失函数(loss)方便定义。

回到根源,什么是机器学习?一句话来概括就是,在训练过程中给予回馈,使得结果接近我们的期望。对于分类问题(classification),我们希望loss在接近bound以后,就不要再有变化,所以我们选择交叉熵(Cross Entropy)作为回馈;在回归问题(regression)中,我们则希望loss只有在两者一摸一样时才保持不变,所以选择点之间的欧式距离(MSE)作为回馈。损失函数(回馈)的选择,会明显影响到训练结果的质量,是设计模型的重中之重。这五年来,神经网络的变种已有不下几百种,但损失函数却寥寥无几。例如caffe的官方文档中,只提供了八种标准损失函数 Caffe | Layer Catalogue。

对于判别模型,损失函数是容易定义的,因为输出的目标相对简单。但对于生成模型,损失函数的定义就不是那么容易。例如对于NLP方面的生成语句,虽然有BLEU这一优秀的衡量指标,但由于难以求导,以至于无法放进模型训练;对于生成猫咪图片的任务,如果简单地将损失函数定义为“和已有图片的欧式距离”,那么结果将是数据库里图片的诡异混合,效果惨不忍睹。当我们希望神经网络画一只猫的时候,显然是希望这张图有一个动物的轮廓、带质感的毛发、和一个霸气的眼神,而不是冷冰冰的欧式距离最优解。如何将我们对于猫的期望放到模型中训练呢?这就是GAN的Adversarial部分解决的问题。

Adversarial:对抗(互怼 )

在generative部分提到了,我们对于猫(生成结果)的期望,往往是一个暧昧不清,难以数学公理化定义的范式。但等一下,说到处理暧昧不清、难以公理化的问题,之前提到的判别任务不也是吗?比如图像分类,一堆RGB像素点和最后N类别的概率分布模型,显然是无法从传统数学角度定义的。那为何,不把生成模型的回馈部分,交给判别模型呢?这就是Goodfellow天才般的创意--他将机器学习中的两大类模型,Generative和Discrimitive给紧密地联合在了一起。

模型一览

对抗生成网络主要由生成部分G,和判别部分D组成。训练过程描述如下

在整个过程中,(火眼晶晶,不错杀也不漏杀)。而则要使得,即让生成的图片尽可能以假乱真。整个训练过程就像是两个玩家在相互对抗,也正是这个名字Adversarial的来源。在论文中[1406.2661] Generative Adversarial Networks ,Goodfellow从理论上证明了该算法的收敛性,以及在模型收敛时,生成数据具有和真实数据相同的分布(保证了模型效果)。

从研究角度,GAN给众多生成模型提供了一种新的训练思路,催生了许多后续作品。例如根据自己喜好定制二次元妹子(逃),根据文字生成对应描述图片(Newmu/dcgan_code, hanzhanggit/StackGAN),甚至利用标签生成3D宜家家居模型(zck119/3dgan-release),这些作品的效果无一不令人惊叹。同时,难人可贵的是这篇论文有很强的数学论证,不同于前几年的套模型的结果说话,而是从理论上保证了模型的可靠性。虽然目前训练还时常碰到困难,后续已有更新工作改善该问题(WGAN, Loss Sensetive GAN, Least Square GAN),相信终有一日能克服。

从通用人工智能高层次来看,这个模型率先使用神经网络来指导神经网络,颇有一种奇妙的美感:仿佛是在辩日的两小儿一样,一开始两者都是懵懂的幼儿,但通过观察周围,相互讨论,逐渐进化出了对外界的认知。 这不正是吾等所期望的终极智能么 -- 机器的知识来源不再局限于人类,而是可以彼此之间相互交流相互学习。也难怪Yann Lecun赞叹GAN是机器学习近十年来最有意思的想法

未来智能实验室是人工智能学家与科学院相关机构联合成立的人工智能,互联网和脑科学交叉研究机构。

未来智能实验室的主要工作包括:建立AI智能系统智商评测体系,开展世界人工智能智商评测;开展互联网(城市)云脑研究计划,构建互联网(城市)云脑技术和企业图谱,为提升企业,行业与城市的智能水平服务。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 人工智能
    +关注

    关注

    1813

    文章

    49783

    浏览量

    261880
  • GaN
    GaN
    +关注

    关注

    21

    文章

    2339

    浏览量

    79326

原文标题:GAN 的发展对于研究通用人工智能有什么意义?

文章出处:【微信号:AItists,微信公众号:人工智能学家】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    利用超微型 Neuton ML 模型解锁 SoC 边缘人工智能

    应用。 为什么选择 Neuton 作为开发人员,在产品中使用边缘人工智能的两个最大障碍是: ML 模型对于您所选微控制器的内存来说太大。 创建自定义 ML 模型本质上是一个手动过程,需要高度的数据科学知识
    发表于 08-31 20:54

    人工智能+”,走老路难赚到新钱

    昨天的“人工智能+”刷屏了,这算是官方第一次对“人工智能+”这个名称定性吧?今年年初到现在,涌现出了一大批基于人工智能的创业者,这已经算是AI2.0时代的第三波创业潮了,第一波是基础大模型,第二波
    的头像 发表于 08-27 13:21 547次阅读
    “<b class='flag-5'>人工智能</b>+”,走老路难赚到新钱

    挖到宝了!人工智能综合实验箱,高校新工科的宝藏神器

    应用场景。从数据采集,到模型推理,都能完整且自如地参与,轻松解锁人工智能全流程实训,让你深度体验AI技术的魅力 。 四、九门课程全覆盖,满足多元学习需求 对于高校教学或者技术学习来说,课程覆盖的广度
    发表于 08-07 14:30

    挖到宝了!比邻星人工智能综合实验箱,高校新工科的宝藏神器!

    应用场景。从数据采集,到模型推理,都能完整且自如地参与,轻松解锁人工智能全流程实训,让你深度体验AI技术的魅力 。 四、九门课程全覆盖,满足多元学习需求 对于高校教学或者技术学习来说,课程覆盖的广度
    发表于 08-07 14:23

    超小型Neuton机器学习模型, 在任何系统级芯片(SoC)上解锁边缘人工智能应用.

    Neuton 是一家边缘AI 公司,致力于让机器 学习模型更易于使用。它创建的模型比竞争对手的框架小10 倍,速度也快10 倍,甚至可以在最先进的边缘设备上进行人工智能处理。在这篇博文中,我们将介绍
    发表于 07-31 11:38

    迅为RK3588开发板Linux安卓麒麟瑞芯微国产工业AI人工智能

    迅为RK3588开发板Linux安卓麒麟瑞芯微国产工业AI人工智能
    发表于 07-14 11:23

    最新人工智能硬件培训AI 基础入门学习课程参考2025版(大模型篇)

    人工智能大模型重塑教育与社会发展的当下,无论是探索未来职业方向,还是更新技术储备,掌握大模型知识都已成为新时代的必修课。从职场上辅助工作的智能助手,到课堂用于学术研究的智能工具,大模型正在工作生活
    发表于 07-04 11:10

    开售RK3576 高性能人工智能主板

    ,HDMI-4K 输出,支 持千兆以太网,WiFi,USB 扩展/重力感应/RS232/RS485/IO 扩展/I2C 扩展/MIPI 摄像头/红外遥控 器等功能,丰富的接口,一个全新八核拥有超强性能的人工智能
    发表于 04-23 10:55

    维视智造助力高校人工智能和机器视觉课程落地

    人工智能浪潮下,机器视觉成为未来产业升级的重点技术,对培养新型创新人才意义重大。
    的头像 发表于 04-19 15:37 1190次阅读

    AI人工智能隐私保护怎么样

    在当今科技飞速发展的时代,AI人工智能已经深入到我们生活的方方面面,从医疗诊断到交通调度,从教育辅助到娱乐互动,其影响力无处不在。然而,随着AI人工智能的广泛应用,其安全性问题也备受关注。那么,AI
    的头像 发表于 03-11 09:46 994次阅读
    AI<b class='flag-5'>人工智能</b>隐私保护怎么样

    我国生成式人工智能的发展现状与趋势

    作为信息化、数字化、智能化的新型技术基座,生成式人工智能对于提升国家战略地位与国际竞争力具有重要意义。2022年11月以来,随着以ChatGPT为代表的大语言模型迅速发展,生成式人工智能
    的头像 发表于 02-08 11:31 2180次阅读

    DeepSeek对人工智能领域的启示

    本文作者是 IBM 董事长兼首席执行官 Arvind Krishna。他认为,社会各界不应止步于应用人工智能,更要成为人工智能的共建者。
    的头像 发表于 02-07 09:46 1463次阅读

    人工智能和机器学习以及Edge AI的概念与应用

    作者:DigiKey Editor 人工智能(AI)已经是当前科技业最热门的话题,且其应用面涉及人类生活的各个领域,对于各个产业都带来相当重要的影响,且即将改变人类未来发展的方方面面。本文将为您介绍
    的头像 发表于 01-25 17:37 1613次阅读
    <b class='flag-5'>人工智能</b>和机器学习以及Edge AI的概念与应用

    AIGC入门及鸿蒙入门

    Generated Content,即人工智能生成内容。它利用人工智能技术自动生成或辅助生成文本、图像、音频、视频等内容。 AIGC的核心技术包括自然语言处理(NLP)、计算机视觉、生成对抗网络(GAN)等
    发表于 01-13 10:32

    人工智能推理及神经处理的未来

    人工智能行业所围绕的是一个受技术进步、社会需求和监管政策影响的动态环境。机器学习、自然语言处理和计算机视觉方面的技术进步,加速了人工智能的发展和应用。包括医疗保健、金融和制造业在内的各个行业对自动化
    的头像 发表于 12-23 11:18 883次阅读
    <b class='flag-5'>人工智能</b>推理及神经处理的未来