0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

英特尔开发套件在Java环境实现ADAS道路识别演示

英特尔物联网 来源:英特尔物联网 2024-04-20 10:32 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

简介

本文使用来自Open Model Zoo的预训练的 road-segmentation-adas-0001模型。ADAS 代表高级驾驶辅助服务。该模型识别四个类别:背景、道路、路缘和标记。

硬件环境

此文使用了英特尔开发套件家族里的哪吒(Nezha)开发板,其为研扬科技针对边缘 AI 行业开发者推出的开发板,虽只有信用卡大小(85 x 56mm),但哪吒采用 Intel N97 处理器(Alder Lake-N),最大睿频 3.6GHz,Intel UHD Graphics 内核GPU,可实现高分辨率显示;板载 LPDDR5 内存、eMMC 存储及 TPM 2.0,配备 GPIO 接口,支持 Windows 和 Linux 操作系统,这些功能和无风扇散热方式相结合,为各种应用程序构建高效的解决方案,如您是树莓派开发者又需要更好的AI算力, 强力推荐此产品, 其适用于如自动化、物联网网关、数字标牌和机器人等应用。售价 RMB 999起, 哪吒开发套件Nezha intel x86开发板板载Alder N97 可Win10/Ubuntu N97 4G+32G。

模型下载

首先进入

https://storage.openvinotoolkit.org/repositories/open_model_zoo/2023.0/models_bin/1/road-segmentation-adas-0001/FP32/

下载指定版本的segmentation 模型文件

571e07ce-fe39-11ee-a297-92fbcf53809c.png

搭建OpenVINO Java环境

由于之前文章都介绍过Java环境的搭建,而这篇文章主要讲述代码怎么写的,所以对于环境的搭建不做过多的说明,大家可以进入

https://github.com/Hmm466/OpenVINO-Java-API/tree/main/docs/cn

查看各个系统的安装文档:

5742ccf8-fe39-11ee-a297-92fbcf53809c.png

编写测试代码

大致上分为四步:

加载OpenVINO Runtime

加载模型

加载图片并推理

处理结果

加载OpenVINO Runtime

OpenVINO vino = OpenVINO.load();
//加载OpenCV Dll
vino.loadCvDll();
OvVersion version = vino.getVersion();
Console.println("---- OpenVINO INFO----");
Console.println("Description : %s", version.description);
Console.println("Build number: %s", version.buildNumber);

结果将输出当前系统OpenVINO版本:

---- OpenVINO INFO----
Description : OpenVINO Runtime
Build number: 2023.2.0-13089-cfd42bd2cb0-HEAD

加载模型

String modelPath = "model/road-segmentation-adas-0001.xml";
Core core = new Core();
// -------- Step 2. Read a model --------
Console.println("[INFO] Loading model files: %s", modelPath);
Model model = core.readModel(modelPath);
CompiledModel compiledModel = core.compileModel(model, "AUTO");

加载图片并处理

Input inputLayerIr = compiledModel.input(0);
Tensor inputTensor = inferRequest.getInputTensor();
Mat rgbImage = new Mat();
Imgproc.cvtColor(mat, rgbImage, Imgproc.COLOR_BGR2RGB);
int imageH = mat.height();
int imageW = mat.width();
int channels = mat.channels();
Shape shape = inputLayerIr.getShape();
long N = shape.getDims().get(0);
long C = shape.getDims().get(1);
long H = shape.getDims().get(2);
long W = shape.getDims().get(3);


Mat resizedImage = new Mat();
Imgproc.resize(mat,resizedImage, new Size(W, H));
int[] data = matToIntArray(resizedImage)
NDArray array = manager.create(data,new Shape(H,W,C));
NDArray inputImage = array.transpose(2,0,1).expandDims(0);
float[] floats = intToFloatArray(inputImage.toIntArray());

开始推理&处理结果

inputTensor.setData(floats);
inferRequest.infer();
Tensor outputTensor = inferRequest.getOutputTensor(0);
int outputLength = (int) outputTensor.getSize();
float[] outputData = outputTensor.getData(float[].class, outputLength);
NDArray ndArray = manager.create(outputData,new Shape(1,4,H,W));
ndArray = ndArray.argMax(1);
if (ndArray.getShape().get(0) == 1){
  ndArray = ndArray.squeeze(0);
}
ndArray = ndArray.toType(DataType.UINT8, true);
NDArray mask = manager.zeros(new Shape(ndArray.getShape().get(0),ndArray.getShape().get(1),3),DataType.UINT8);
Mat _mat = new Mat((int)ndArray.getShape().get(0),(int)ndArray.getShape().get(1), CvType.CV_8UC3);
byte[] b = mask.toByteArray();
_mat.put(0,0,b);
double[][] colors = new double[][]{{255, 44, 255}, {48, 255, 141}, {53, 255, 120}, {199, 216, 52}};
for (int i = 0 ; i < colors.length;i++) {
    NDArray labelIndexMap = ndArray.eq(i);
    labelIndexMap = labelIndexMap.toType(DataType.UINT8,true).mul(255);
    Mat mat1 = new Mat((int) labelIndexMap.getShape().get(0), (int) labelIndexMap.getShape().get(1),CvType.CV_8UC1);
    mat1.put(0,0,labelIndexMap.toByteArray());
    List contours = new ArrayList<>();
  Mat hierarchies = new Mat();
  Imgproc.findContours(mat1,contours,hierarchies,Imgproc.RETR_EXTERNAL,Imgproc.CHAIN_APPROX_SIMPLE);
  Imgproc.drawContours(_mat,contours,-1,new Scalar(colors[i][0], colors[i][1], colors[i][2]),Imgproc.FILLED);
}
Mat resized_mask = new Mat();
Imgproc.resize(_mat,resized_mask, new Size(imageW, imageH));
Core.addWeighted(resized_mask,0.2F,mat,0.8F,0,resized_mask);

结果展示

这里将背景、道路、路缘和标记都分别标记了出来,我们可以根据各个类别做自己想做的事情,比如分割出道路,将背景去除等等。

575c1db6-fe39-11ee-a297-92fbcf53809c.png

结语

整体步骤是这样,在该项目中,基于N97的哪吒平台通过Java API实现了基于segmentation 模型的分割代码,并且成功处理图片并展示。后续笔者将基于OpenVINO 实现OCR,背景扣除等模型实现。



审核编辑:刘清

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 英特尔
    +关注

    关注

    61

    文章

    10275

    浏览量

    179336
  • 物联网
    +关注

    关注

    2939

    文章

    47330

    浏览量

    408038
  • JAVA
    +关注

    关注

    20

    文章

    2997

    浏览量

    115692
  • ADAS系统
    +关注

    关注

    4

    文章

    228

    浏览量

    26372
  • OpenVINO
    +关注

    关注

    0

    文章

    117

    浏览量

    717

原文标题:英特尔开发套件在Java环境实现ADAS道路识别演示 | 开发者实战

文章出处:【微信号:英特尔物联网,微信公众号:英特尔物联网】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    科通技术获评英特尔首批尊享级合作伙伴

    近日,科通科技获评为英特尔首批“尊享级合作联盟成员”,即英特尔合作伙伴联盟体系中的最高级别会员。这一身份认证不仅是对双方十五年深度协同的认可,也是双方技术协同、产业赋能道路上的又一次
    的头像 发表于 11-17 16:52 521次阅读
    科通技术获评<b class='flag-5'>英特尔</b>首批尊享级合作伙伴

    使用英特尔® NPU 插件C++运行应用程序时出现错误:“std::Runtime_error at memory location”怎么解决?

    使用OpenVINO™工具套件版本 2024.4.0 构建C++应用程序 使用英特尔® NPU 插件运行了 C++ 应用程序 遇到的错误: Microsoft C++ exception: std::runtime_error at memory location
    发表于 06-25 08:01

    新思科技与英特尔EDA和IP领域展开深度合作

    近日,英特尔代工Direct Connect 2025上,新思科技宣布与英特尔EDA和IP领域展开深度合作,包括利用其通过认证的AI驱动数字和模拟设计流程支持
    的头像 发表于 05-22 15:35 743次阅读

    英特尔发布全新GPU,AI和工作站迎来新选择

    英特尔推出面向准专业用户和AI开发者的英特尔锐炫Pro GPU系列,发布英特尔® Gaudi 3 AI加速器机架级和PCIe部署方案   2025 年 5 月 19 日,北京 ——今日
    发表于 05-20 11:03 1673次阅读

    英特尔® 具身智能大小脑融合方案发布:构建具身智能落地新范式

     今日举办的2025英特尔具身智能解决方案推介会上,英特尔正式发布其具身智能大小脑融合方案(下称具身智能方案)。该方案基于英特尔® 酷睿™ Ultra处理器的强大算力,以及全新的具身
    发表于 04-18 17:26 912次阅读
    <b class='flag-5'>英特尔</b>® 具身智能大小脑融合方案发布:构建具身智能落地新范式

    2025英特尔人工智能创新应用大赛正式启动

    近日,2025英特尔人工智能创新应用大赛(以下简称“大赛”)正式启动。本届大赛以“‘码’上出发,‘芯’创未来”为主题,赛制、规模、奖项和赛事支持上实现多重升级,为开发者和企业提供展示
    的头像 发表于 04-02 15:24 877次阅读

    英特尔借助开放生态系统,加速边缘AI创新

    英特尔推出全新AI边缘系统、边缘AI套件和开放边缘平台软件,赋能合作伙伴将AI无缝融入现有基础设施   英特尔发布全新英特尔®AI边缘系统、边缘AI
    发表于 03-21 11:31 302次阅读
    <b class='flag-5'>英特尔</b>借助开放生态系统,加速边缘AI创新

    运行Open Model Zoo演示时出现错误“PdhAddCounterW() 失败的情况,怎么解决?

    构建 Open Model Zoo 演示应用程序。 已下载的英特尔预先训练的模型。 使用此命令运行演示: interactive_face_detection_demo ^ --loop ^ -m
    发表于 03-05 09:35

    为什么无法检测到OpenVINO™工具套件中的英特尔®集成图形处理单元?

    Ubuntu* Desktop 22.04 上安装了 英特尔® Graphics Driver 版本并OpenVINO™ 2023.1。 运行 python 代码: python -c
    发表于 03-05 08:36

    请问OpenVINO™工具套件英特尔®Distribution是否与Windows® 10物联网企业版兼容?

    无法基于 Windows® 10 物联网企业版的目标系统上使用 英特尔® Distribution OpenVINO™ 2021* 版本推断模型。
    发表于 03-05 08:32

    安装OpenVINO™适用于Raspberry Pi64位操作系统的工具套件2022.3.1,配置英特尔®NCS2时出错怎么解决?

    安装OpenVINO™适用于 Raspberry Pi* 64 位操作系统的工具套件 2022.3.1。 配置英特尔® NCS2时出错: CMake Error at CMakeLists.txt
    发表于 03-05 07:27

    英特尔®独立显卡与OpenVINO™工具套件结合使用时,无法运行推理怎么解决?

    使用英特尔®独立显卡与OpenVINO™工具套件时无法运行推理
    发表于 03-05 06:56

    英特尔®NCS2运行演示时“无法启动后找到启动设备”怎么解决?

    使用 英特尔® NCS2 运行 推断管道演示脚本 。 首次尝试中成功运行演示应用程序。 从第二次尝试开始遇到错误:E: [ncAPI] [ 150951] [security_ba
    发表于 03-05 06:48

    英特尔带您解锁云上智算新引擎

    近日举办的2024火山引擎FORCE原动力大会上,英特尔与火山引擎联合发布基于英特尔 至强 6 性能核处理器的第四代服务器实例,以打造弹性算力底座的产品化实践。同时,英特尔也携手扣子
    的头像 发表于 12-23 14:05 1235次阅读

    【正点原子STM32H7R3开发套件试用体验】开发套件开箱报告

    打开盒子,把开发套件,再和之前的STM32F103精英版做个对比: 上下对比,可以看到,两套开发套件,是一脉相承的,都是开发板,电源,红外遥控器。盒子的底部,还有连接线。 可以说,
    发表于 12-12 00:54