0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

摩尔定律的未来:CMOS技术的挑战与机遇

半导体产业纵横 来源:半导体产业纵横 2024-01-24 11:26 次阅读

受到威胁的不是摩尔定律本身,而是它所代表的促进经济增长、科学进步和可持续创新的能力。

CMOS 技术通过平衡性能、能源效率和经济性,彻底改变了电子行业。片上系统 (SoC) 范例允许采用通用方法来驱动日益复杂的系统,在单个芯片上集成越来越多的晶体管。正如已故的戈登摩尔在半个多世纪前所预测的那样,这也实现了大批量和低成本的生产,提高了电子产品的可承受性。 摩尔表示,半导体芯片上的晶体管数量每两年就会增加一倍,这一趋势将推动日益强大和高效的电子设备的发展。简而言之,你可以通过把事情变得更小来让事情变得更好。 对小型化和通用设计的极大关注是 CMOS 在过去几十年中取得巨大成功的核心,但如今已接近其物理极限。

CMOS 缩放遇到多个障碍

虽然 SoC 方法提供了最大的能源效率,但它促使系统架构师在 CMOS 平台内积累大量复杂的功能。2000年代诞生的多核架构的优化导致了多种计算引擎的兴起,从最初的CPUGPU的分割,到不同功率优化的处理器,再到不同类型的加速器。多年来,SoC 内的内存子系统也发生了广泛的多样化,导致了复杂的层次结构和各种访问机制。 这种持续优化背后的驱动力是需要根据其必须执行的任务类型或工作负载来优化计算系统,每个任务或工作负载都高度特定于目标应用程序。值得注意的是,这种演变甚至可以在单一技术平台内实现,而且就目前情况而言,有几个重要的障碍阻碍了其进一步发展:

我们正在见证由微凸块节距缩放和混合键合驱动的芯片间电气互连的巨大进步,这允许对 SoC 功能进行细粒度划分。基于硅光子学的光学互连和 3D 互连的进步实现了联合封装,以更短的长度提供高带宽、低功耗的光学连接。这就引出了一个问题:SoC 方法是否仍然保持其原有的能效优势。分成多个芯片可以在成本和性能优化方面带来巨大的好处。

应用的多样性需要先进的技术来突破计算性能的界限,这使得 CMOS 达到了其作为通用平台所能提供的极限。设计人员现在需要解决单一平台的限制,这有时会导致效率大幅降低。

整个 CMOS 平台的整体缩放解决方案变得越来越难以实现。例如,2 纳米纳米片技术将使传统的厚氧化物 IO 电路从 SoC 中移出。SRAM 的扩展程度不如逻辑,并且 SoC 中的功率需要通过背面互连网络进行分配,因为正面互连电阻会变得令人望而却步。

由于晶体管 RC 寄生效应的增长快于驱动强度的增长,CMOS 的节点到节点性能改进也显著降低。由于设计规则和工艺集成的复杂性,先进 CMOS 的设计和晶圆成本显著增加,因此出现了这种情况。

从通用到“惊喜彩票”

在技术和产品需求不断变化的有趣背景下,创造性的组合催生了创新的解决方案。例如,Apple M1 Ultra 本质上是通过硅桥将两个芯片缝合在一起,从而创建具有前所未有的性能和功能的混合 SoC。AMD 通过在原始处理器 SoC 顶部 3D 堆叠 SRAM 芯片来增加内存容量。在人工智能领域,超级横向扩展处理系统(例如全晶圆 Cerebras 的 WSE-2 和 Nvidia 的大型 GPU 芯片 H100 组合 HBM DRAM)正在突破深度学习计算的界限。

上面的例子说明了技术开发是如何根据给定应用程序空间的具体需求而被推向极端的。与此同时,增强现实和虚拟现实、6G 无线和自动驾驶汽车等新兴应用将需要极大的性能改进和功耗降低。工作负载和操作条件将进一步增加 CMOS 所支持的实现的多样性,从而迫使人们做出更多次妥协。 换句话说,我们正在目睹 CMOS 未能发挥其作为通用技术的强大作用。相反,我们最终会遇到这样的情况:应用程序的成功将取决于可用的 CMOS 满足其特定边界条件的程度。Sara Hooker 创造了“硬件彩票”,表明硬件决定了哪些研究想法会成功或失败。

协同优化系统和技术

当你唯一的工具是锤子时,你很容易把所有问题都当作钉子来对待。解决这个难题的唯一方法是扩展工具箱。换句话说,我们需要更加通用的技术平台,因为移动芯片组的能源、成本、温度、功率密度、内存容量、速度等限制与 HPC 或 VR 系统的限制非常不同。 这就是为什么我们设想一种由系统技术协同优化 (STCO) 驱动的全新范例:CMOS 2.0。STCO 涉及系统设计人员与技术团队密切合作,以确定最合适的选项,而不是依赖现成的扩展选项。技术团队在开发下一代产品时还需要了解特定的系统规范。应用程序、工作负载和系统限制的多样性将需要更广泛的技术选择。 它需要重新思考技术平台,以便满足各种系统和应用程序的需求。CMOS 2.0 通过启用定制芯片来实现这一目标,这些芯片是根据多个 3D 堆叠层中的各种功能的智能分区而构建的。

CMOS2.0 具有与经典 CMOS 平台相同的“外观和感觉” 与我们今天看到的异构系统不同,在异构系统中,混合键合解决了内存限制,有源中介层解决了带宽限制,背面配电网络解决了功耗问题,而 CMOS 2.0 通过在 SoC 内部引入异构性,采取了更具革命性的方法。它将具有与经典 CMOS 平台相同的“外观和感觉”,同时为系统优化提供更多功能。密集逻辑层将代表大部分成本,并且仍然需要扩展。然而,其他缩放限制现在已被物理删除到其他层。

两全其美

CMOS 2.0 将利用现有的和新的先进 2.5D 和 3D 互连技术,例如密集间距铜混合键合、电介质键合、小芯片集成、晶圆背面处理以及涉及异质层转移的顺序 3D 集成。它将允许 SoC 的高互连粒度以及封装内系统提供的高科技异构性,从根本上解除传统 CMOS 的限制。 CMOS 2.0 将允许使用低电容、低驱动晶体管来驱动短程互连,同时利用单独层中的高驱动晶体管来驱动长程互连。新的嵌入式存储器可以作为高速缓存层次结构中的单独层引入。它还可以实现极端的 BEOL 节距图案以进行缩放,而不受电源压降的限制。

引入非硅器件(如 2D 材料)、新型嵌入式存储器(如 MRAM 或沉积氧化物半导体)将变得更加容易,因为它们无需满足通用 CMOS 规范。对于设计人员来说,CMOS 2.0 平台感觉就像传统的 CMOS,但具有显著扩展且更通用的工具箱。 虽然尺寸缩放不再是推动计算缩放的唯一答案,但 CMOS 2.0 不会消除增加密度的需要。然而,扩展问题必须以更全面的方式解决,因为答案会根据应用程序的不同而不同。高密度逻辑将优化每瓦性能,而高驱动逻辑则保持关键路径中的带宽和性能。扩展性较差的设备,例如密集逻辑厚氧化物 IO、电源开关模拟或 MIMCAP,现在可以使用更具成本效益的技术节点集成在单独的层中。移除所有必要但不可扩展的 SoC 部件也为一系列新型设备打开了大门。

革命已经开始

背面配电网络是我们进入新 CMOS 2.0 时代的第一个迹象。所有主要代工厂都宣布他们将转向在晶圆背面配备配电系统的集成芯片,这对于实现高性能和节能电子设备变得越来越重要。晶圆背面处理的使用为集成电源开关等设备、从正面迁移全局时钟路由或添加新的系统功能提供了机会。 可以说,这种范式转变提供了更复杂的技术现实。

EDA 工具的发展速度有多快?分区的成本和复杂性是否会变得令人望而却步?CMOS 2.0 平台的热性能是否可控?只有时间会给出答案。引用德国哲学家和革命家弗里德里希·恩格斯的话:“没有人确切知道他正在创造的革命。” 与此同时,这也正是这些时代如此迷人的原因。探索这些未知领域需要整个半导体生态系统的密切合作和共同创新。受到威胁的不是摩尔定律本身,而是它所代表的促进经济增长、科学进步和可持续创新的能力。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • CMOS
    +关注

    关注

    58

    文章

    5154

    浏览量

    233348
  • 摩尔定律
    +关注

    关注

    4

    文章

    622

    浏览量

    78521
  • soc
    soc
    +关注

    关注

    38

    文章

    3745

    浏览量

    215685
  • 晶体管
    +关注

    关注

    76

    文章

    9054

    浏览量

    135216
  • 半导体芯片
    +关注

    关注

    60

    文章

    890

    浏览量

    69799

原文标题:CMOS 2.0 革命

文章出处:【微信号:ICViews,微信公众号:半导体产业纵横】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    功能密度定律是否能替代摩尔定律摩尔定律和功能密度定律比较

    众所周知,随着IC工艺的特征尺寸向5nm、3nm迈进,摩尔定律已经要走到尽头了,那么,有什么定律能接替摩尔定律呢?
    的头像 发表于 02-21 09:46 213次阅读
    功能密度<b class='flag-5'>定律</b>是否能替代<b class='flag-5'>摩尔定律</b>?<b class='flag-5'>摩尔定律</b>和功能密度<b class='flag-5'>定律</b>比较

    摩尔定律的终结:芯片产业的下一个胜者法则是什么?

    在动态的半导体技术领域,围绕摩尔定律的持续讨论经历了显着的演变,其中最突出的是 MonolithIC 3D 首席执行官Zvi Or-Bach于2014 年的主张。
    的头像 发表于 01-25 14:45 541次阅读
    <b class='flag-5'>摩尔定律</b>的终结:芯片产业的下一个胜者法则是什么?

    中国团队公开“Big Chip”架构能终结摩尔定律

    摩尔定律的终结——真正的摩尔定律,即晶体管随着工艺的每次缩小而变得更便宜、更快——正在让芯片制造商疯狂。
    的头像 发表于 01-09 10:16 355次阅读
    中国团队公开“Big Chip”架构能终结<b class='flag-5'>摩尔定律</b>?

    英特尔CEO基辛格:摩尔定律仍具生命力,且仍在推动创新

    摩尔定律概念最早由英特尔联合创始人戈登·摩尔在1970年提出,明确指出芯片晶体管数量每两年翻一番。得益于新节点密度提升及大规模生产芯片的能力。
    的头像 发表于 12-25 14:54 265次阅读

    摩尔定律时代,Chiplet落地进展和重点企业布局

    如何超越摩尔定律,时代的定义也从摩尔定律时代过渡到了后摩尔定律时代。 后摩尔定律时代,先进封装和Chiplet技术被寄予厚望。近日,由博闻创
    的头像 发表于 12-21 00:30 1027次阅读

    应对传统摩尔定律微缩挑战需要芯片布线和集成的新方法

    应对传统摩尔定律微缩挑战需要芯片布线和集成的新方法
    的头像 发表于 12-05 15:32 327次阅读
    应对传统<b class='flag-5'>摩尔定律</b>微缩<b class='flag-5'>挑战</b>需要芯片布线和集成的新方法

    摩尔定律不会死去!这项技术将成为摩尔定律的拐点

    因此,可以看出,为了延续摩尔定律,专家绞尽脑汁想尽各种办法,包括改变半导体材料、改变整体结构、引入新的工艺。但不可否认的是,摩尔定律在近几年逐渐放缓。10nm、7nm、5nm……芯片制程节点越来越先进,芯片物理瓶颈也越来越难克服。
    的头像 发表于 11-03 16:09 294次阅读
    <b class='flag-5'>摩尔定律</b>不会死去!这项<b class='flag-5'>技术</b>将成为<b class='flag-5'>摩尔定律</b>的拐点

    超越摩尔定律,下一代芯片如何创新?

    摩尔定律是指集成电路上可容纳的晶体管数目,约每隔18-24个月便会增加一倍,而成本却减半。这个定律描述了信息产业的发展速度和方向,但是随着芯片的制造工艺接近物理极限,摩尔定律也面临着瓶颈。为了超越
    的头像 发表于 11-03 08:28 485次阅读
    超越<b class='flag-5'>摩尔定律</b>,下一代芯片如何创新?

    摩尔定律的终结真的要来了吗

    仍然正确的预测,也就是大家所熟知的“摩尔定律”,但同时也提醒人们,这一定律的延续正日益困难,且成本不断攀升。
    的头像 发表于 10-19 10:49 348次阅读
    <b class='flag-5'>摩尔定律</b>的终结真的要来了吗

    半导体行业产生深远影响的定律摩尔定律

    有人猜测芯片密度可能会超过摩尔定律的预测。佐治亚理工学院的微系统封装研究指出,2004年每平方厘米约有50个组件,到2020年,组件密度将攀升至每平方厘米约100万个组件。
    的头像 发表于 10-08 15:54 695次阅读

    摩尔定律为什么会消亡?摩尔定律是如何消亡的?

    虽然摩尔定律的消亡是一个日益严重的问题,但每年都会有关键参与者的创新。
    的头像 发表于 08-14 11:03 1349次阅读
    <b class='flag-5'>摩尔定律</b>为什么会消亡?<b class='flag-5'>摩尔定律</b>是如何消亡的?

    什么是摩尔定律?

    摩尔定律是近半个世纪以来,指导半导体行业发展的基石。它不仅是技术进步的预言,更是科技领域中持续创新的见证。要完全理解摩尔定律的影响和意义,首先必须了解它的起源、内容及其对整个信息技术
    的头像 发表于 08-05 09:36 3559次阅读
    什么是<b class='flag-5'>摩尔定律</b>?

    【芯闻时译】扩展摩尔定律

    来源:半导体芯科技编译 CEA-Leti和英特尔宣布了一项联合研究项目,旨在开发二维过渡金属硫化合物(2D TMD)在300mm晶圆上的层转移技术,目标是将摩尔定律扩展到2030年以后。 2D
    的头像 发表于 07-18 17:25 289次阅读

    摩尔定律时代新赛道—硅光子芯片技术

    纵观芯片发展的历史,总是离不开一个人们耳熟能详的概念 ——“摩尔定律”。
    的头像 发表于 06-15 10:23 836次阅读
    后<b class='flag-5'>摩尔定律</b>时代新赛道—硅光子芯片<b class='flag-5'>技术</b>

    摩尔定律已过时?谁还能撑起芯片的天下?

    熟悉半导体行业的人想必对摩尔定律很熟悉,摩尔定律自问世以来就是半导体行业的最高目标,正是基于该目标,电子设备变得更加快速、高效且便宜,然而随着集成电路的尺寸越来越小,摩尔定律逐渐难以实现,因此很多人
    的头像 发表于 05-18 11:04 395次阅读