0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

百纳米完胜7纳米?清华团队提出全新芯片架构

科创板日报 来源:科创板日报 2023-10-31 15:23 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

相同准确率下,比现有高性能芯片算力提升三千倍,能效提升四百万倍。光学部分的加工最小线宽仅采用百纳米级,电路部分仅采用180nm CMOS工艺,已取得比7纳米制程的高性能芯片多个数量级的性能提升。

中国科协发布的2023重大科学问题中,“如何实现低能耗人工智能”被排在首位,清华大学团队的答案是——用光电模拟芯片。

a45d2ce2-779b-11ee-939d-92fbcf53809c.png

据清华大学官方网络新闻发布平台“清华新闻网”报道,清华大学自动化系戴琼海院士、吴嘉敏助理教授与电子工程系方璐副教授、乔飞副研究员联合攻关,提出了一种“挣脱”摩尔定律的全新计算架构:光电模拟芯片(ACCEL),算力达到目前高性能商用芯片的3000余倍。

如果用交通工具的运行时间来类比芯片中信息流计算的时间,那么这枚芯片的出现,相当于将京广高铁8小时的运行时间缩短到8秒钟。

除了惊人的算力优势,清华大学正在开发的这枚芯片还在能效有显著提升,制造门槛也有望大大降低。

在研发团队演示的智能视觉任务和交通场景计算中,光电融合芯片的系统级能效(单位能量可进行的运算数)实测达到了74.8 Peta-OPS/W,是现有高性能芯片的400万余倍。形象地说,原本供现有芯片工作一小时的电量,可供它工作500多年。而在超低功耗下运行的光电融合芯片将有助于大幅度改善芯片发热问题,为芯片的未来设计带来全方位突破。

制作方面,该芯片光学部分的加工最小线宽仅采用百纳米级,而电路部分仅采用180nm CMOS工艺,已取得比7纳米制程的高性能芯片多个数量级的性能提升。与此同时,其所使用的材料简单易得,造价仅为后者的几十分之一。

相关成果以“高速视觉任务中的纯模拟光电芯片”(All-analog photo-electronic chip for high-speed vision tasks)为题,以长文(article)形式发表在《自然》(Nature)期刊上。该课题得到科技部2030“新一代人工智能”重大项目、国家自然科学基金委基础科学中心项目等的支持。

a46764aa-779b-11ee-939d-92fbcf53809c.png

光计算芯片,即以光为载体的计算芯片,利用光传播中携带的信息进行计算。

随着晶体管尺寸接近物理极限,近十年内摩尔定律已放缓甚至面临失效。如何构建新一代计算架构,建立人工智能时代的芯片“新”秩序,成为国际社会高度关注的前沿热点。光计算以其超高的并行度和速度,被认为是未来颠覆性计算架构的最有力竞争方案之一。

然而用光来做计算,仍面临许多国际难题,光计算芯片一直难以真正替代当前的电子芯片。

清华大学攻关团队的破解之道在于——创造性地提出了光电深度融合的计算框架,从最本质的物理原理出发,结合了基于电磁波空间传播的光计算,与基于基尔霍夫定律的纯模拟电子计算,“挣脱”传统芯片架构中数据转换速度、精度与功耗相互制约的物理瓶颈,在一枚芯片上突破大规模计算单元集成、高效非线性、高速光电接口三个国际难题。

具体来看,团队构建了可见光下的大规模多层衍射神经网络实现视觉特征提取,利用光电流直接进行基于基尔霍夫定律的纯模拟电子计算,两者集成在同一枚芯片框架内,完成了“传感前+传感中+近传感”的新型计算系统。

a4780256-779b-11ee-939d-92fbcf53809c.png

ACCEL的架构

(a、传统光电计算的工作流程,包括大规模光电二极管ADC阵列;b、ACCEL的工作流程。衍射光学计算模块在光域处理输入图像进行特征提取,其输出光场由光电二极管阵列产生光电流直接用于模拟电子计算。)

光电融合的新型架构,不仅开辟出这项未来技术通往日常生活的一条新路径,还对量子计算、存内计算等其他未来高效能技术与当前电子信息系统的融合深有启发。

上述研究团队就在相关论文中介绍,ACCEL可广泛应用于可穿戴设备、自动驾驶和工业检查等领域。

论文通讯作者之一戴琼海院士称:“开发出人工智能时代的全新计算架构是一座高峰,而将新架构真正落地到现实生活,解决国计民生的重大需求,是更重要的攻关,也是我们的责任。”《自然》期刊特邀发表的该研究专题评述也指出,“或许这枚芯片的出现,会让新一代计算架构,比预想中早得多地进入日常生活。”

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 芯片
    +关注

    关注

    462

    文章

    53574

    浏览量

    459405
  • 架构
    +关注

    关注

    1

    文章

    532

    浏览量

    26506
  • 清华大学
    +关注

    关注

    2

    文章

    72

    浏览量

    18356

原文标题:百纳米完胜7纳米?清华团队提出全新芯片架构

文章出处:【微信号:chinastarmarket,微信公众号:科创板日报】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    中国科研团队发布稀土材料最新成果

    据央视新闻报道中国科研团队发布稀土材料最新成果;日前又黑龙江大学、清华大学和新加坡国立大学合作完成的稀土材料突破性研究成果在《Nature》正式发表,标志着科研团队成功攻克绝缘性稀土纳米
    的头像 发表于 11-24 14:25 387次阅读

    下一代高速芯片晶体管解制造问题解决了!

    先进的晶体管架构,是纳米片晶体管(Nanosheet FET)的延伸和发展,主要用于实现更小的晶体管尺寸和更高的集成密度,以满足未来半导体工艺中对微缩的需求。叉片晶体管的核心特点是其分叉式的栅极结构
    发表于 06-20 10:40

    超声波指纹模组灵敏度飞升!低温纳米烧结银浆立大功

    纳米级特性,展现出了卓越的性能优势,成为了指纹模组材料领域的一颗新星,有望引领指纹模组进入一个全新的发展阶段 。 探秘低温纳米烧结银浆 微观世界里的神奇银浆 低温纳米烧结银浆,从微观
    发表于 05-22 10:26

    全球芯片产业进入2纳米竞争阶段:台积电率先实现量产!

    随着科技的不断进步,全球芯片产业正在进入一个全新的竞争阶段,2纳米制程技术的研发和量产成为了各大芯片制造商的主要目标。近期,台积电、三星、英特尔以及日本的Rapidus等公司纷纷加快了
    的头像 发表于 03-25 11:25 1175次阅读
    全球<b class='flag-5'>芯片</b>产业进入2<b class='flag-5'>纳米</b>竞争阶段:台积电率先实现量产!

    纳米技术的发展历程和制造方法

    10纳米甚至更小。这种技术进步使得每个芯片可以容纳更多的器件,从而实现更强大的运算能力、更高的存储容量以及更快的运行速度。
    的头像 发表于 03-04 09:43 4011次阅读
    <b class='flag-5'>纳米</b>技术的发展历程和制造方法

    东风纳米06外观曝光

    东风纳米第二款全新车型东风纳米06自光影预告图发布之后,不少小伙伴都很好奇地问,“新车到底长啥样呀?”。
    的头像 发表于 02-24 13:38 688次阅读

    纳米铜烧结为何纳米银烧结?

    纳米铜烧结技术逐渐展现出其独特的优势,甚至在某些方面被认为纳米银烧结。本文将深入探讨纳米铜烧结技术为何能够在这一领域脱颖而出。
    的头像 发表于 02-24 11:17 1620次阅读
    <b class='flag-5'>纳米</b>铜烧结为何<b class='flag-5'>完</b><b class='flag-5'>胜</b><b class='flag-5'>纳米</b>银烧结?

    纳米铜烧结为何纳米银烧结?

    行业资讯
    北京中科同志科技股份有限公司
    发布于 :2025年02月24日 09:00:26

    纳米晶体技术介绍

    本文旨在介绍人类祖先曾经使用过纳米晶体的应用领域。   纳米技术/材料在现代社会中的应用与日俱增。纳米晶体,这一类独特的纳米材料,预计将在液晶显示器、发光二极管、激光器等新一代设备中发
    的头像 发表于 01-13 09:10 1422次阅读
    <b class='flag-5'>纳米</b>晶体技术介绍

    Rapidus携手博通推进2纳米芯片量产

    近日,据日媒报道,日本半导体新兴企业Rapidus正与全球知名芯片制造商博通(Broadcom)展开合作,共同致力于2纳米尖端芯片的量产。Rapidus计划在今年6月向博通提供试产芯片
    的头像 发表于 01-10 15:22 983次阅读

    OptiFDTD应用:用于光纤入波导耦合的硅纳米锥仿真

    介绍 在高约束芯片上与亚微米波导上耦合光的两种主要方法是光栅或锥形耦合器。[1] 耦合器由高折射率比材料组成,是基于具有纳米尺寸尖端的短锥形。[2] 锥形耦合器实际上是光纤和亚微米波导之间的紧凑模式
    发表于 01-08 08:51

    7纳米工艺面临的各种挑战与解决方案

    本文介绍了7纳米工艺面临的各种挑战与解决方案。 一、什么是7纳米工艺? 在谈论7纳米工艺之前,我
    的头像 发表于 12-17 11:32 2408次阅读

    纳米管的结构与特性解析 碳纳米管在能源储存中的应用

    纳米管的结构与特性解析 1. 结构概述 碳纳米管(Carbon Nanotubes,简称CNTs)是一种由碳原子组成的纳米级管状结构材料,具有独特的一维纳米结构。它们可以看作是石墨烯
    的头像 发表于 12-12 09:09 5665次阅读

    纳米管的导电性能介绍 碳纳米管如何提高材料强度

    纳米管的导电性能介绍 1. 碳纳米管的结构特性 碳纳米管的结构可以看作是石墨烯(单层碳原子构成的二维材料)卷曲而成的一维结构。根据卷曲的方式不同,碳纳米管可以分为扶手椅型、锯齿型和手
    的头像 发表于 12-12 09:07 3756次阅读

    OptiFDTD应用:用于光纤入波导耦合的硅纳米锥仿真

    介绍 在高约束芯片上与亚微米波导上耦合光的两种主要方法是光栅或锥形耦合器。[1] 耦合器由高折射率比材料组成,是基于具有纳米尺寸尖端的短锥形。[2] 锥形耦合器实际上是光纤和亚微米波导之间的紧凑模式
    发表于 12-11 11:27