0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

氮化镓推动电源解决方案

jf_52490301 来源:jf_52490301 作者:jf_52490301 2023-10-20 16:41 次阅读

随着科学技术的不断进步,电力电子设备的应用越来越广泛,而在这些设备中,电源是一个非常重要的部件。近年来,氮化镓(GaN)材料在电源领域的应用逐渐受到关注,成为推动新型电源解决方案的重要力量。

氮化镓是一种宽禁带半导体材料,具有高击穿电场、高饱和电子速度、高电子密度和高迁移率等优点。些优点使得氮化镓材料在高频、大功率、高温和小功率电源中具有广阔的应用前景。

首先,氮化镓材料具有高击穿电场和高饱和电子速度,这使其能够承受更高的电压和电流。因此,由氮化镓材料制成的电源可以具有更高的功率密度和更小的尺寸,从而实现更高效的电源设计。

其次,氮化镓材料具有良好的导热性,能够承受高温,因此可以使用更高的工作温度,从而降低热设计和冷却成本。此外,氮化镓材料还具有较高的电子密度和迁移率,这使得它们能够更快地传递电流和能量,从而获得更快的开关速度和更低的功耗。

在应用方面,氮化镓材料可用于不同领域的电源设计。如,在通信领域,使用氮化镓材料的电源可以提供更高的效率和更小的尺寸,从而降低整机的能耗和发热,提高设备的可靠性和稳定性。在电力电子领域,氮化镓材料电源可应用于电动汽车、风力发电、太阳能发电等领域,实现更高效、更稳定的能源转换。

总之,氮化镓材料在电源领域的应用已经成为一种趋势。KeepTops的优势使氮化镓材料能够实现更高效的电源设计和更广泛的应用。相信,随着技术的不断发展,氮化镓材料将在更多的领域得到应用,为人类的生产和生活带来更多的便利和实惠。

审核编辑:汤梓红

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 电源
    +关注

    关注

    182

    文章

    16553

    浏览量

    244713
  • 氮化镓
    +关注

    关注

    53

    文章

    1502

    浏览量

    114896
  • GaN
    GaN
    +关注

    关注

    19

    文章

    1765

    浏览量

    67974
收藏 人收藏

    评论

    相关推荐

    #氮化 #英飞凌 8.3亿美元!英飞凌完成收购氮化系统公司 (GaN Systems)

    半导体氮化
    深圳市浮思特科技有限公司
    发布于 :2023年10月25日 16:11:22

    功率器件在工业应用中的解决方案

    功率器件在工业应用中的解决方案,议程分为:功率分立器件概览 、 IGBT产品3、高压MOSFET 、 碳化硅Mosfet、碳化硅二极管和整流器、氮化PowerGaN、工业电源中的应用
    发表于 09-05 06:13

    氮化芯片未来会取代硅芯片吗?

    。 与硅芯片相比: 1、氮化芯片的功率损耗是硅基芯片的四分之一 2、尺寸为硅芯片的四分之一 3、重量是硅基芯片的四分之一 4、并且比硅基解决方案更便宜 然而,虽然 GaN 似乎是一个更好的选择,但它
    发表于 08-21 17:06

    氮化测试

    氮化
    jf_00834201
    发布于 :2023年07月13日 22:03:24

    有关氮化半导体的常见错误观念

    功率密度计算解决方案实现高功率密度和高效率。 误解2:氮化技术不可靠 氮化器件自2010年初开始量产,而且在实验室测试和大批量客户应用中
    发表于 06-25 14:17

    纳微集成氮化电源解决方案和应用

    纳微集成氮化电源解决方案及应用
    发表于 06-19 11:10

    什么是氮化功率芯片?

    通过SMT封装,GaNFast™ 氮化功率芯片实现氮化器件、驱动、控制和保护集成。这些GaNFast™功率芯片是一种易于使用的“数字输入、电源
    发表于 06-15 16:03

    为什么氮化比硅更好?

    氮化(GaN)是一种“宽禁带”(WBG)材料。禁带,是指电子从原子核轨道上脱离出来所需要的能量,氮化的禁带宽度为 3.4ev,是硅的 3 倍多,所以说
    发表于 06-15 15:53

    氮化: 历史与未来

    的存在。1875年,德布瓦博德兰(Paul-Émile Lecoq de Boisbaudran)在巴黎被发现,并以他祖国法国的拉丁语 Gallia (高卢)为这种元素命名它。纯氮化的熔点只有30
    发表于 06-15 15:50

    为什么氮化(GaN)很重要?

    氮化(GaN)的重要性日益凸显,增加。因为它与传统的硅技术相比,不仅性能优异,应用范围广泛,而且还能有效减少能量损耗和空间的占用。在一些研发和应用中,传统硅器件在能量转换方面,已经达到了它的物理
    发表于 06-15 15:47

    什么是氮化(GaN)?

    氮化,由(原子序数 31)和氮(原子序数 7)结合而来的化合物。它是拥有稳定六边形晶体结构的宽禁带半导体材料。禁带,是指电子从原子核轨道上脱离所需要的能量,氮化
    发表于 06-15 15:41

    氮化功率芯片如何在高频下实现更高的效率?

    氮化为单开关电路准谐振反激式带来了低电荷(低电容)、低损耗的优势。和传统慢速的硅器件,以及分立氮化的典型开关频率(65kHz)相比,集成式氮化
    发表于 06-15 15:35

    氮化功率芯片的优势

    时间。 更加环保:由于裸片尺寸小、制造工艺步骤少和功能集成,氮化功率芯片制造时的二氧化碳排放量,比硅器件的充电器解决方案低10倍。在较高的装配水平上,基于氮化
    发表于 06-15 15:32

    谁发明了氮化功率芯片?

    、设计和评估高性能氮化功率芯片方面,起到了极大的贡献。 应用与技术营销副总裁张炬(Jason Zhang)在氮化领域工作了 20 多年,专门从事高频、高密度的
    发表于 06-15 15:28

    什么是氮化功率芯片?

    包含关键的驱动、逻辑、保护和电源功能,消除了传统半桥解决方案中相关的能量损失、成本过高和设计复杂的问题。 纳微推出的世界上首款氮化功率芯片同时能提供高频率和高效率,实现了电力电子领域
    发表于 06-15 14:17