0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

氮化镓材料在电力电子器件中的应用

jf_52490301 来源:jf_52490301 作者:jf_52490301 2023-10-13 16:02 次阅读

随着科学技术的不断进步,电力电子设备的应用越来越广泛,而氮化镓(GaN)材料在提高能源效率方面发挥着重要作用。本文将讨论氮化镓材料的特性,氮化镓在电力电子设备中的应用,以及氮化镓解决方案如何实现更高的能效。

一、氮化镓材料的特性
氮化镓是一种宽禁带半导体材料,具有高击穿电场、高饱和电子速度和高电子迁移率等特性。这些特性使氮化镓在高频、高温和大功率应用中具有巨大的优势,如电力电子、通信、汽车、航空航天等。

二、氮化镓在电力电子设备中的应用。
电力电子设备广泛应用于各个工业领域,如电力系统、工业电机汽车电子新能源等。氮化镓是一种高性能的电力电子材料,主要应用于高频、高效、高温的电力电子设备。

氮化镓在开关电源中的应用

1、开关电源是一种常见的电力电子设备类型,主要用于将固定的电压转换成所需的电压。作为一种宽禁带半导体材料,氮化镓具有开关速度快、导通电阻低、效率高的特点,使得开关电源体积更小、效率更高、发热更少。

2、氮化镓在电力半导体器件中的应用
功率半导体器件是电力电子设备中的核心元件之一,主要用于功率转换和氮气分配。镓作为一种高性能的半导体材料,可用于功率半导体器件,以增加器件的开关速度,降低导通电阻,提高效率等。

wKgaomUo-WGAXCtfAAMcCrpj3f4701.png

氮化镓

三、氮化镓解决方案如何实现更高的能效
1.提高开关速度
开关速度是电力电子设备中的一个重要参数,它直接影响到设备的效率。氮化镓材料的开关速度比传统的硅材料快得多。因此,使用氮化镓材料可以有效增加电力电子设备的开关速度,从而降低设备的能耗,提高能源利用效率。

2.减少导通电阻
导通电阻是电力电子设备中的另一个重要参数,它直接影响到设备的功耗和发热量。镓的导通电阻氮化物材料比传统的硅材料小得多。因此,氮化镓材料的使用可以有效降低电力电子设备的导通电阻,从而降低设备的发热量,提高能源利用效率。

3.高温适应性强
氮化镓材料具有良好的耐高温性能,能在高温环境下稳定工作。因此,氮化镓材料的使用可以使电力电子设备在高温环境下运行,从而提高设备可靠性和能源效率。

4.提高功率密度
由于氮化镓材料的特性,使用氮化镓材料的电力电子器件可以具有更高的功率密度。这意味着在相同体积下,使用氮化镓材料的电力电子器件可以输出更高的功率,使器件更加节能。
综上所述,氮化镓材料在电力电子器件中的应用可以有效提高能源利用效率。通过提高开关速度、降低导通电阻、提高高温适应性和增加功率密度,可以使电力电子器件的能效更高。着科学技术的不断发展,相信氮化镓材料将在更多领域得到应用,为提高能源利用效率做出更大贡献。

审核编辑 黄宇

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 芯片
    +关注

    关注

    447

    文章

    47796

    浏览量

    409157
  • 电子器件
    +关注

    关注

    2

    文章

    533

    浏览量

    31881
  • 氮化镓
    +关注

    关注

    53

    文章

    1502

    浏览量

    114904
收藏 人收藏

    评论

    相关推荐

    电力电子器件大全及使用方法

    电子发烧友网站提供《电力电子器件大全及使用方法.pdf》资料免费下载
    发表于 11-18 14:46 1次下载
    <b class='flag-5'>电力</b><b class='flag-5'>电子器件</b>大全及使用方法

    大功率电力电子器件散热研究综述

    针对现阶段制约电力电子技术发展的散热问题,以温度对电力电子器件的影响、电力电子设备热设计特点、常
    的头像 发表于 11-07 09:37 994次阅读
    大功率<b class='flag-5'>电力</b><b class='flag-5'>电子器件</b>散热研究综述

    平面磁件如何提高电力电子器件性能

    竞争激烈的当今市场,可再生能源、储能、电源适配器、电源充电器和数据处理应用需要具有更高功率密度的低成本、高效率解决方案来提高性能,以满足不断增长的电信、汽车、医疗保健和航空航天行业的需求。氮化
    发表于 09-06 06:38

    氮化芯片未来会取代硅芯片吗?

    氮化 (GaN) 可为便携式产品提供更小、更轻、更高效的桌面 AC-DC 电源。Keep Tops 氮化(GaN)是一种宽带隙半导体材料
    发表于 08-21 17:06

    有关氮化半导体的常见错误观念

    阻碍业界各种应用采纳氮化器件,例如氮化
    发表于 06-25 14:17

    实现更小、更轻、更平稳的电机驱动器的氮化器件

    ,因此预期EMI相同。基于氮化器件的100 kHz 解决方案,输出电流纹波降低,而电机的电流具有更好的正弦形状。 图 5:带有 LC
    发表于 06-25 13:58

    什么是氮化功率芯片?

    通过SMT封装,GaNFast™ 氮化功率芯片实现氮化器件、驱动、控制和保护集成。这些GaNFast™功率芯片是一种易于使用的“数字输入
    发表于 06-15 16:03

    为什么氮化比硅更好?

    半桥拓扑结构结合了频率、密度和效率优势。如有源钳位反激式、图腾柱PFC和LLC。随着从硬开关拓扑结构到软开关拓扑结构的改变,初级FET的一般损耗方程可以最小化,从而提升至10倍的高频率。 氮化
    发表于 06-15 15:53

    氮化: 历史与未来

    ,以及基于硅的 “偏转晶体管 “屏幕产品的消亡。 因此,氮化是我们电视、手机、平板电脑、笔记本电脑和显示器,使用的高分辨率彩色屏幕背后的核心技术。
    发表于 06-15 15:50

    为什么氮化(GaN)很重要?

    氮化(GaN)的重要性日益凸显,增加。因为它与传统的硅技术相比,不仅性能优异,应用范围广泛,而且还能有效减少能量损耗和空间的占用。一些研发和应用,传统硅
    发表于 06-15 15:47

    什么是氮化(GaN)?

    氮化,由(原子序数 31)和氮(原子序数 7)结合而来的化合物。它是拥有稳定六边形晶体结构的宽禁带半导体材料。禁带,是指电子从原子核轨道
    发表于 06-15 15:41

    氮化功率芯片如何在高频下实现更高的效率?

    氮化为单开关电路准谐振反激式带来了低电荷(低电容)、低损耗的优势。和传统慢速的硅器件,以及分立氮化的典型开关频率(65kHz)相比,集成
    发表于 06-15 15:35

    氮化功率芯片的优势

    更小:GaNFast™ 功率芯片,可实现比传统硅器件芯片 3 倍的充电速度,其尺寸和重量只有前者的一半,并且能量节约方面,它最高能节约 40% 的能量。 更快:氮化电源 IC 的集
    发表于 06-15 15:32

    谁发明了氮化功率芯片?

    ,是氮化功率芯片发展的关键人物。 首席技术官 Dan Kinzer在他长达 30 年的职业生涯,长期担任副总裁及更高级别的管理职位,并领导研发工作。他硅、碳化硅(SiC)和
    发表于 06-15 15:28

    什么是氮化功率芯片?

    氮化(GaN)功率芯片,将多种电力电子器件整合到一个氮化芯片上,能有效提高产品充电速度、效率
    发表于 06-15 14:17