0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

基于Ⅱ类超晶格的中波红外带间级联探测器设计实现

MEMS 来源:MEMS 2023-10-10 09:09 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

基于InAs/GaSb Ⅱ类超晶格(T2SL),科研人员成功实现了短波、中波、长波和甚长波的红外探测。但T2SL探测器通常要在低温下工作,需要制冷,这大大增加了整机尺寸、功耗和成本。为了降低探测器的暗电流,不同势垒能带结构的T2SL探测器被提出,如采用单极势垒、互补势垒、M结构势垒、双异质结构的探测器,以及带间级联结构红外探测器。

据麦姆斯咨询报道,近期,中国科学院半导体研究所半导体材料科学重点实验室和中国科学院大学材料与光电研究中心的科研团队在《光子学报》期刊上发表了以“基于Ⅱ类超晶格的中波红外带间级联探测器(特邀)”为主题的文章。该文章第一作者为薛婷,通讯作者为黄建亮和马文全。

基于带间级联结构在高温工作的优势,本文采用T2SL材料作为吸收区设计并制备了一个五级带间级联中波红外光电探测器,相比于其他带间级联探测器,该器件在达到相似探测率水平下截止波长更长。且在77~220 K温度范围的暗电流曲线中观察到了负微分电阻效应(NDR),对峰谷电流比随温度升高而降低的趋势进行了解释。

结构设计及生长

如图1所示,带间级联探测器采用多级级联结构,每级由吸收区、空穴势垒区和电子势垒区组成,吸收区多采用InAs/GaSb二类超晶格,空穴势垒区一般采用InAs/AlSb多量子阱,电子势垒区一般采用GaSb/AlSb多量子阱。吸收区位于空穴势垒区和电子势垒区之间,吸收光子能量产生电子,电子向电子势垒区的运输被高势垒阻挡,但可以在光学声子的辅助下弛豫到最低能级,再通过电子势垒区共振隧穿到下一吸收区的价带,完成带间级联输运过程。

dc972c64-66bd-11ee-939d-92fbcf53809c.png

图1 探测器的能带结构示意图

在带间级联结构中,空穴势垒区的能级E₁应与吸收区的电子基态能级E₀接近,电子势垒区的空穴能级HH₀₂应与吸收区的重空穴能级HH₀接近,相邻能级之间的弛豫和隧穿需要光学声子的辅助,所以空穴势垒区和电子势垒区的能级应设计为等差分布,相邻能级之间的能量差应为一个纵向光声子能量,约为30 meV。

基于以上原理,采用8 k·p模型对能带结构进行计算并对探测器中的级联结构能级进行设计,其中以InAs材料的价带顶为能量零点。为了实现中波红外探测,吸收区采用InAs(2.4 nm)/GaSb(3.6 nm)超晶格结构,厚度为0.5 μm,对应的电子基态E₀和重空穴基态HH₀分别约为0.72 eV和0.43 eV。该探测器利用了从HH₀到E₀的跃迁,因此吸收区的有效带隙为0.29 eV,对应的探测波长就是4.28 μm。为了光生载流子输运,空穴势垒区由AlSb(2.1 nm)/InAs(9.0 nm)/AlSb(2.2 nm)/InAs(8.1 nm)/AlSb(2.3 nm)/InAs(7.2 nm)/AlSb(2.4 nm)/InAs(6.3 nm)/AlSb(2.5 nm)/InAs(5.4 nm)/AlSb(2.4 nm)/InAs(4.5 nm)/AlSb(2.3 nm)/InAs(3.6 nm)/AlSb(2.2 nm)/InAs(2.9 nm)/AlSb(2.1 nm)组成,其对应的电子能级(E1、E2、E3、E4、E5、E6、E7、E8)的差约等于一个纵向光学声子的能量。电子势垒区由两个空穴量子阱组成,具体排列是AlSb(2.1 nm)/GaSb(5.3 nm)/AlSb(2.1 nm)/GaSb(7.5 nm)/AlSb(2.1 nm),计算得到相邻能级的能量差与纵向光学声子能量有轻微偏差,但基本符合设计。

P型接触层为0.5 μm厚的GaSb和100个周期的InAs(2.4 nm)/GaSb(36 nm)超晶格,掺杂浓度为2×10¹⁸ cm⁻³;级联结构区由5个周期的电子势垒区、吸收区和空穴势垒区组成;N型接触层由100个周期的InAs(2.4 nm)/GaSb(3.6 nm)超晶格和20 nm厚的InAs层组成,掺杂浓度为2×10¹⁸ cm⁻³。外延片样品采用分子束外延技术在n型GaSb(001)衬底上使用As源和Sb源生长,将生长的样品进行标准化光刻和蚀刻制备成方形台面结构。方形台面的尺寸为300 μm×300 μm。P型和N型欧姆接触电极都采用Ti/Au金属。

实验结果

暗电流测试

图2是从77 K到300 K温度范围内的变偏压器件暗电流密度曲线,当偏置电压是−20 mV时,在77 K、160 K和300 K时,暗电流密度分别为1.91×10⁻⁷ A/cm²、1.95×10⁻⁵ A/cm² 和4.3×10⁻² A/cm²。图2中低温特定正偏压范围内可以观察到负微分电阻效应,并且呈现了与温度相关的趋势。根据暗电流密度的数据,可以计算得到零偏动态电阻与面积的乘积R₀A。例如,在77 K、160 K和300 K时,R₀A分别为2.68×10⁴ Ω·cm²、1.02×10³ Ω·cm²和0.44 Ω·cm²。

dca145a0-66bd-11ee-939d-92fbcf53809c.png

图2 77 K到300 K的暗电流密度曲线

为了对暗电流机制进行分析,做出如图3所示的温度从77 K到300 K时的暗电流密度对1000/T(温度)的依赖关系,即Arrhenius曲线。从Arrhenius图可知,在180~300 K之间器件的激活能为279 meV。对于T2SL探测器来说,50%截止波长非常接近超晶格吸收区的有效带隙,即电子基态能级和重空穴基态能级之间的差。而从图4(a)可以得到在300 K时器件50%截止波长是4.88 μm,对应的有效带隙是254 meV。可见激活能非常接近有效带隙的值,这意味着在180到300 K温度范围内扩散暗电流占暗电流的主导地位。这是因为采用了带间级联结构,对于其他结构的T2SL探测器,在类似的温度范围内的暗电流通常以产生-复合暗电流为主。但在77 K到140 K左右的温度范围内,测量得到的激活能只有23 meV左右。该段的暗电流机制尚不清楚,其中一个猜测是测量得到的暗电流结果可能包括了暗电流和背景辐照导致的光电流。

dcc37850-66bd-11ee-939d-92fbcf53809c.png

图3 暗电流密度在77 K到300 K之间的Arrhenius图

dce1c5d0-66bd-11ee-939d-92fbcf53809c.png

图4 当偏置电压为0 V时,器件从77 K到300 K下的响应率和探测率D*

响应率与探测率光谱

实验中采用Bruker Vertex 70傅里叶红外光谱仪测试带间级联探测器的光谱,通过将黑体温度设置在800 K校准得到光响应谱。图4是77~300 K温度范围内零偏压时的响应率和探测率谱。在77 K时,50%截止波长为4.02 μm,器件的探测波长非常接近我们的设计,峰值响应波长为3.79 μm,对应的峰值响应率为0.52 A/W,探测率D*为1.26×10¹² cm·Hz1/2/W。在300 K时,器件的50%截止波长红移到了4.88 μm,峰值响应波长红移到了4.47 μm,对应的峰值响应率为0.20 A/W,探测率D*为1.28×10⁹ cm·Hz1/2/W。

负微分电阻效应分析

前节中提到,77 K到220 K温度范围内的暗电流中可以观察到负微分电阻效应(NDR)。在77 K时,当偏置电压约为1.12~1.13 V时,表现出NDR效应;在100 K时,出现NDR效应的偏置电压转移到了1.05~1.08 V;到200 K时,NDR效应的电压范围变为0.72~0.75 V;而当温度升到220 K时,峰值暗电流与谷值暗电流重合在0.66 V处。很明显,出现NDR效应的偏压随温度变化而变化,即器件中存在共振隧穿现象且隧穿条件随温度的变化而变化。

图5呈现了NDR效应的峰值暗电流(Ip)、谷值暗电流(IV)和峰谷电流比(PVCR)随温度的变化曲线,PVCR是共振隧穿条件满足程度的指标。在77 K时,Ip约为7.44×10⁻⁴ A,IV为4.16×10⁻⁴ A,PVCR计算得1.79。在160 K时,Ip约为7.45×10⁻⁴ A,IV是5.69×10⁻⁴ A,PVCR变成1.31。在220 K时,Ip几乎等于IV,约为8.23×10⁻⁴ A,此时PVCR变为1,观察不到NDR效应。从图5中可以看出,随着温度的升高,Ip基本不变,IV变大,PVCR值降低。

dd27a7e4-66bd-11ee-939d-92fbcf53809c.png

图5 77 K到220 K下的峰值暗电流(Ip)、谷值暗电流(Iv)以及峰谷电流比(PVCR)

在本实验中,器件的隧穿机制共有两种。一种是共振隧穿机制,另一种是通过电子势垒区的隧穿机制。波谷处的暗电流IV主要是通过带间级联结构中势垒的隧穿暗电流。当温度升高时,N(E)和f(E)的乘积增大,而隧穿概率T(E,V)与能态成指数正比关系,即T(E,V)随温度升高指数升高,所以n(V)急速升高,因此谷点处的暗电流会随着温度的升高而增加。而在NDR峰值处的暗电流包含了两种机制的暗电流,由两种隧穿机制共同决定了暗电流的变化。根据负微分电阻效应的原理,此处共振隧穿电流达到最大,继续升高偏压则不再满足共振隧穿条件,暗电流随之减小。为了简化模型,通常将共振隧穿电流的隧穿概率T(E,V)视为一个常数。温度升高时,满足共振隧穿条件时的N(E)和f(E)的乘积减小,n(V)减小,导致共振隧穿暗电流的减小。在暗电流的结果中可以观察到IP基本不随温度变化,这可能是因为随着温度的升高共振隧穿暗电流的减小量与通过势垒的暗电流的增大量基本相等。相应地,在较高的温度下,基本不变的IP和升高的IV导致了PVCR的减小,最终使PVCR减小到1,不再观察到负微分电阻效应。

结论

本文设计并制备了一种采用T2SL材料的带间级联结构的中波红外光电探测器。在77 K时,50%截止波长是4.02 μm,0 V峰值探测率为1.26×10¹² cm·Hz1/2/W。在300 K时,峰值探测率达到1.28×10⁹ cm·Hz1/2/W,50%截止波长是4.88 μm,与其他采用带间级联结构制备的更短波长的探测器达到相同探测率水平。在180~300 K的温度范围内,器件的暗电流主要由扩散电流而不是产生复合电流主导。在77~220 K温度范围内的暗电流曲线中也观察到负微分电阻(NDR)效应。结果表明,具有带间级联结构的T2SL探测器可以进行高温工作,特别是在中波长范围内。

这项研究获得国家自然科学基金面上项目(No.61874103)的资助和支持。






审核编辑:刘清

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 红外探测器
    +关注

    关注

    5

    文章

    310

    浏览量

    18946
  • 光电探测器
    +关注

    关注

    4

    文章

    277

    浏览量

    21397
  • 暗电流
    +关注

    关注

    0

    文章

    29

    浏览量

    10306

原文标题:基于Ⅱ类超晶格的中波红外带间级联探测器

文章出处:【微信号:MEMSensor,微信公众号:MEMS】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    红外探测器像元尺寸与光学镜头关系解析

    红外探测器像元尺寸与光学镜头之间存在紧密的关系,这种关系直接影响红外热成像系统的分辨率、探测距离、灵敏度、成像质量以及体积成本,以下是具体分析:
    的头像 发表于 11-24 11:09 203次阅读
    <b class='flag-5'>红外</b><b class='flag-5'>探测器</b>像元尺寸与光学镜头关系解析

    红外焦平面探测器核心指标:像元尺寸

    像元尺寸是指红外探测器芯片焦平面阵列上每个像元的实际物理尺寸,单位为微米(μm)。此外,它还有种表达叫像元间距或者像元中心距,即相邻像元中心的距离。下面将围绕红外探测器像元尺寸展开详细
    的头像 发表于 11-24 11:03 249次阅读
    <b class='flag-5'>红外</b>焦平面<b class='flag-5'>探测器</b>核心指标:像元尺寸

    制冷型红外探测器如何选择?中波与长波的全面对比

    红外探测技术通过捕捉物体发出的红外辐射实现全天候成像,其中制冷型中波红外(MWIR,3-5μm)
    的头像 发表于 11-11 10:22 255次阅读
    制冷型<b class='flag-5'>红外</b><b class='flag-5'>探测器</b>如何选择?<b class='flag-5'>中波</b>与长波的全面对比

    光学气体成像(OGI)探测器应用场景有哪些?

    光学气体成像(OGI)探测器依托先进的红外热成像技术,能够精准捕捉气体分子在特定红外波段的吸收特征,将原本难以察觉的气体泄漏转化为清晰可见的热成像画面,为工业安全与环境监测提供了高效、直观的解决方案。凭借非接触式检测、实时动态追
    的头像 发表于 11-07 13:32 144次阅读
    光学气体成像(OGI)<b class='flag-5'>探测器</b>应用场景有哪些?

    上海技物所研制出长波红外圆偏振焦平面阵列探测器

    );c.圆偏振成像原理示意图。 近日,中国科学院上海技术物理研究所红外科学与技术全国重点实验室陆卫、陈效双、周靖研究员等开展合作,成功研制出长波红外圆偏振焦平面阵列探测器,通过光子-电子协同设计与纳米级穿孔对准工艺,突破集成式圆
    的头像 发表于 10-17 07:40 144次阅读
    上海技物所研制出长波<b class='flag-5'>红外</b>圆偏振焦平面阵列<b class='flag-5'>探测器</b>

    红外探测器“欢乐大比拼”:非制冷vs制冷,看看谁更“牛”!

    在科技飞速发展的今天,红外探测器就像隐藏在暗处的“超级眼睛”,在安消防、工业检测、户外观测等众多领域发挥着不可或缺的作用。而在红外探测器的大家族中,非制冷和制冷型这两大“明星选手”常常
    的头像 发表于 10-16 10:21 516次阅读
    <b class='flag-5'>红外</b><b class='flag-5'>探测器</b>“欢乐大比拼”:非制冷vs制冷,看看谁更“牛”!

    表面技术:光电探测器性能提升的新引擎

    在纳米科技飞速发展的当下,表面作为一种新型人工材料,正逐渐走进大众视野,成为科研领域的热门话题。在光探测领域,它能大幅提升光吸收效率和光谱选择性,助力制造出更灵敏、更小巧的探测器,广泛应用于成像
    的头像 发表于 07-24 11:32 613次阅读
    <b class='flag-5'>超</b>表面技术:光电<b class='flag-5'>探测器</b>性能提升的新引擎

    VirtualLab:通用探测器

    摘要 通用探测器是VirtualLab Fusion中来评估和输出电磁场任何信息的最通用工具。它能够提供不同域(空间域和空间频域)和坐标系(场与探测器位置坐标系)的信息。此外,通过使用非常灵活的内置
    发表于 06-12 08:59

    红外探测器像元尺寸怎么选

    像元尺寸指的是在红外探测器芯片焦平面阵列上,每个像元的实际物理尺寸,通常以微米(μm)为单位。常见的规格有8μm、12μm、17μm、25μm等。像元尺寸直接影响着红外热成像组件的体积、成本以及成像
    的头像 发表于 04-01 16:43 1091次阅读
    <b class='flag-5'>红外</b><b class='flag-5'>探测器</b>像元尺寸怎么选

    红外探测器像元尺寸详解

    红外探测器像元尺寸是红外热成像领域中的一个关键参数,它指的是在红外探测器芯片焦平面阵列上,每个像元的实际物理尺寸,通常以微米(μm)为单位来
    的头像 发表于 03-31 16:33 1511次阅读
    <b class='flag-5'>红外</b><b class='flag-5'>探测器</b>像元尺寸详解

    红外探测器的分类介绍

    和量化这种辐射,红外探测器利用了多种物理效应,其中最为关键的是红外热效应和光电效应。这些效应的输出大多为电量形式,或者可以方便地转换为电量,从而实现了对
    的头像 发表于 03-27 15:33 1977次阅读
    <b class='flag-5'>红外</b><b class='flag-5'>探测器</b>的分类介绍

    红外探测器晶圆级、陶瓷级和金属级三种封装形式有什么区别?

    红外探测器作为红外热像仪的核心部件,广泛应用于工业、安防、医疗等多个领域。随着技术的不断进步,红外探测器的封装形式也在不断发展和完善。其中,
    的头像 发表于 03-05 16:43 1034次阅读
    <b class='flag-5'>红外</b><b class='flag-5'>探测器</b>晶圆级、陶瓷级和金属级三种封装形式有什么区别?

    新型范德华异质结探测器实现宽带偏振探测

    ₂两种二维材料的优异特性,形成了低暗电流、高性能的范德华异质结器件。该器件不仅具有宽带的探测能力,覆盖可见光到近红外光谱范围,还展现出了显著的偏振敏感性,为实现偏振视觉成像提供了有力支持。 这项创新成果在偏振敏感光电
    的头像 发表于 02-12 10:10 763次阅读

    用于光波导系统的均匀性探测器

    提供了均匀性探测器,可以进行所需的研究。在本文件中,我们将演示可用的选项以及如何操作均匀性探测器。 **案例演示 ** **均匀性探测器 ** **探测器功能:相干参数 ** 如
    发表于 12-20 10:30

    红外光束烟雾探测器

    光束烟感电子软件设计 反射光束感烟探测器,内置激光指针和数字指南,设计成人性化的认准方法。 内置微处理,可自我诊断和监视内部故障。 支持安装距离:8~160米。
    发表于 12-16 18:12