0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

纳米级厚、大面积氧化石墨烯薄膜如何实现液体中的高性能声音探测?

MEMS 来源:MEMS 2023-08-02 09:42 次阅读

开发高精度、高灵敏度、高鲁棒性的光学探测系统是新兴技术行业迫切需要的。液体中的高性能声音探测是传感技术的一个重要研究方向。这些探测器用于海洋或其它液体环境,例如强酸和强碱溶液以及变压器油,以监听水下声音。

据麦姆斯咨询报道,近日,慕尼黑工业大学(Technical University of Munich)和重庆大学(Chongqing University)的研究人员联合在Advanced Engineering Materials期刊上发表了以“High-Performance Sound Detection of Nanoscale-Thick and Large-Area Graphene Oxide Films in Liquids”为题的文章。文中介绍了通过一种简单方法制造的纳米级厚、大面积氧化石墨烯(GO)薄膜,实现了液体中的高性能声音探测。由振动直径约为4.4 mm的GO薄膜和单模光纤(SMF)组成的法布里-珀罗(F-P)腔被用作传感核心,实现了液体中声音的探测。这项研究为快速开发用于不同液体中高性能声音探测的传感器提供了可能性。

在这项工作中,研究人员提出了一种省时、高效、厚度可控的液体沉淀法制备GO薄膜的工艺。下图显示了利用铜箔制备GO薄膜的工艺流程。所制备的GO薄膜表面在宏观尺度上可以被认为是相当平坦的,并且没有明显的缺陷(粗糙度:4.777 nm),这对于传感探头的制备非常重要。最终研究人员获得了厚度约为100 nm、振动直径约为4.4 mm的GO传感膜。与之前的研究相比,这种振动直径约为4.4 mm的GO传感膜面积更大。

73715c64-3085-11ee-9e74-dac502259ad0.jpg

GO薄膜和传感探头的制造工艺流程

由于石英管的最小内径为2.76 mm,所以利用位移台将直径为2.5 mm的带有陶瓷套圈的SMF插入带有GO膜的石英管中。由GO膜和SMF端面组成的F-P腔的长度调整为约45 μm。使用紫外线(UV)粘合剂将石英管和陶瓷套圈粘合在一起,以获得传感探头。由支撑套管和透声套管组成的透声帽用于保护GO传感膜,以抵抗液体压力,从而实现长期稳定性。

7394cdac-3085-11ee-9e74-dac502259ad0.jpg

基于由GO膜和SMF端面组成的F-P腔的传感探头

随后,研究人员为传感探头的性能测试搭建了测试平台。液体环境用超纯水模拟。该平台由传感系统、激励系统和参考系统组成。传感系统包括可调谐激光器、示波器、环行器、光电探测器、SMF和传感探头。两个GO薄膜厚度分别约为100 nm和200 nm的传感探头被浸入超纯水中进行性能测试。测试结果表明,两个传感探头对不同水平的声音信号都具有线性声压响应,它们在1 kHz下的灵敏度分别为619.7 mV/Pa和79.68 mV/Pa;两个传感探头对1-100 kHz范围内的声音信号有相当平坦的频率响应;此外,两个传感探头对来自不同方向的声音信号具有一致的方向响应,其在1-100 kHz范围内所有方向上的灵敏度分别约为630 mV/Pa和84 mV/Pa。

73a74d88-3085-11ee-9e74-dac502259ad0.jpg

传感探头的性能测试平台

73c521a0-3085-11ee-9e74-dac502259ad0.jpg

两个GO薄膜厚度分别约为100 nm和200 nm的传感探头的性能测试结果

总而言之,研究人员展示了纳米级厚、大面积的GO薄膜在液体中的高性能声音探测。利用一种简单可控的方法制备了纳米级厚、大面积的GO薄膜。振动直径约为4.4 mm的GO薄膜和SMF构成传感探头的F-P腔,在入射光波长约为1545.06 nm的条件下,其长度约为45 μm。将由不锈钢材料制成的支撑套管和具有声音传输功能的聚氨酯弹性体制成的透声套管组成的透声帽放置在传感探头上以抵抗液体压力,因此,这种GO传感膜可以长时间稳定工作。将两个GO膜厚度分别约为100nm和200nm的传感探头浸入超纯水中进行性能测试。测试结果表明,两个传感探头都保持了线性声压响应,在1 -100 kHz的范围内均具有平坦的频率响应和一致的方向响应。此外,两个传感探头被放在变压器油、生理盐水和无水乙醇中进行性能测试。测试结果表明,在不同液体中,在1-100 kHz的范围内,两个传感探头在所有方向上的灵敏度分别约为630 mV/Pa和84 mV/Pa。这些结果表明,纳米级厚、大面积的GO薄膜可以在液体中实现高性能的声音探测,为开发传感器提供了一种有竞争力的解决方案。





审核编辑:刘清

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 传感器
    +关注

    关注

    2525

    文章

    48137

    浏览量

    740256
  • 示波器
    +关注

    关注

    111

    文章

    5664

    浏览量

    181822
  • 探测器
    +关注

    关注

    14

    文章

    2441

    浏览量

    72077
  • 激光器
    +关注

    关注

    17

    文章

    2254

    浏览量

    59079
  • SMF
    SMF
    +关注

    关注

    0

    文章

    13

    浏览量

    8668

原文标题:纳米级厚、大面积氧化石墨烯薄膜,实现液体中的高性能声音探测

文章出处:【微信号:MEMSensor,微信公众号:MEMS】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    研究人员开发出高性能p型非晶氧化物半导体

    和 107 的开/关电流比,与早期 n 型氧化薄膜晶体管的关键电气属性非常相似。此外,薄膜晶体管在长时间偏置应力下表现出显著的稳定性以及大面积薄膜
    的头像 发表于 04-30 14:58 99次阅读
    研究人员开发出<b class='flag-5'>高性能</b>p型非晶<b class='flag-5'>氧化</b>物半导体

    怎么区分电阻是薄膜还是

    :电阻器件的数据手册通常会说明其制造工艺和材料类型,通过查阅相关数据手册可以进一步确认电阻是薄膜还是膜。 需要注意的是,有些电阻可能是混合型的,既有薄膜又有
    发表于 03-07 07:49

    石墨电容

    探索未来能量储存新篇章:高性能4.2V 5500F 2.6Ah石墨电容推荐 随着科技的飞速发展,我们对于能量储存的需求也日益增长。在众多的储能元件
    发表于 02-21 20:28

    功放pcb大面积覆铜的好处有哪些呢?

    电路的性能和稳定性有着重要的影响。大面积覆铜是一种常见的设计技术,在功放PCB中广泛应用。以下将详细介绍大面积覆铜在功放PCB中的好处。 1. 提高导热性能 功放电路中的功放元件(如晶
    的头像 发表于 01-17 16:50 276次阅读

    如何利用纳米晶体石墨实现高性能宽带红外探测呢?

    从近红外(NIR)到短波红外(SWIR)光谱的光电探测对于许多应用都非常重要。近年来,研究人员正在努力探索新兴拓扑狄拉克半金属(Dirac semimetal)材料在宽带光电探测方面的潜力。
    的头像 发表于 11-29 09:37 200次阅读
    如何利用<b class='flag-5'>纳米</b>晶体<b class='flag-5'>石墨</b><b class='flag-5'>实现</b><b class='flag-5'>高性能</b>宽带红外<b class='flag-5'>探测</b>呢?

    怎样解决模拟地和数字地大面积直接相连的问题呢?

    如果把模拟地和数字地大面积直接相连,会导致互相干扰,不短接又不妥,怎样可以解决这个问题呢? 在现代电子设备中,一般都包含了模拟电路和数字电路两种电路。模拟电路一般用于处理连续的信号,如声音和图像
    的头像 发表于 10-22 15:03 536次阅读

    纳米级测量仪器:窥探微观世界的利器

    纳米级测量,由于物体尺寸的相对较小,传统的测量仪器往往无法满足精确的要求。而纳米级测量仪器具备高精度、高分辨率和非破坏性的特点,可以测量微小的尺寸。1、光学3D表面轮廓仪SuperViewW1光学3D
    发表于 10-11 14:37

    热响应性GO纳米片的优势

    基于石墨烯的二维材料由于其优异的结构、机械、电学、光学和热性能,最近成为科学探索的焦点。其中,基于氧化石墨烯(GO)(石墨烯的氧化衍生物)的
    的头像 发表于 09-11 11:40 475次阅读

    如何利用氧化石墨烯改性增加PP?

    氧化石墨烯(GO) 的结构与石墨烯类似, 具有蜂窝状的结构形貌, 具有很好的强度和柔韧性, 具有一定的导电、导热性能, 与高分子材料形成复合材料, 具有增强增韧、提高耐热性能及消除静电
    发表于 07-20 12:44 287次阅读
    如何利用<b class='flag-5'>氧化石墨</b>烯改性增加PP?

    大面积二维Cu2Te垂直阵列催化剂助力CO2电还原

    铜箔表面可控生长大面积二维Cu2Te纳米片垂直阵列的化学气相沉积方法,开发了一种能够实现高效电催化还原CO2合成甲烷的金属相二维层状材料催化剂,为新型二维层状材料的规模化可控制备以及低能耗、高活性和稳定性的CO2RR铜基
    的头像 发表于 07-17 15:23 664次阅读
    <b class='flag-5'>大面积</b>二维Cu2Te垂直阵列催化剂助力CO2电还原

    中国科研团队用石墨烯研发出高性能电磁屏蔽材料

     发展新型电磁屏蔽材料是解决电磁污染的关键,特别是超薄、轻质并具有优异力学强度和可靠性的高性能电磁屏蔽材料。日前,北京航空航天大学化学学院研究员衡利苹团队研发了一种具有超润滑界面的还原氧化石墨烯/液态金属(S-rGO/LM)异质层状纳米
    的头像 发表于 07-12 14:46 583次阅读

    石墨烯提升复合材料性能

    作为一种单层二维碳同素异形体,石墨烯表现出优于碳纳米管的性能,包括更大的表面积、卓越的电子迁移率、更高的拉伸强度和杨氏模量。然而,最近在制造碳纤维时使用
    的头像 发表于 06-26 15:12 508次阅读
    <b class='flag-5'>石墨</b>烯提升复合材料<b class='flag-5'>性能</b>

    实现敏感薄膜高性能化的主要途径

    。其中,敏感薄膜材料创制和高性能化是获得高性能薄膜荧光传感器的关键,其核心又是高性能敏感单元的创制;而只有在
    的头像 发表于 06-12 09:57 387次阅读
    <b class='flag-5'>实现</b>敏感<b class='flag-5'>薄膜</b>的<b class='flag-5'>高性能</b>化的主要途径

    氧化石墨烯+可降解聚合物=新复合材料

    他们首先生产氧化石墨烯,然后在两种不同的温度下——25°C(GO-DA1 和 GO-ODA1)和80°C(GO-DA2 和 GO-ODA2)——用两种类型的烷基胺(癸胺 (DA) 和十八胺 (ODA))对其进行功能化。
    的头像 发表于 06-09 15:50 293次阅读
    <b class='flag-5'>氧化石墨</b>烯+可降解聚合物=新复合材料

    苹果Apple ID出现大面积故障

    苹果Apple ID出现大面积故障 苹果Apple ID昨天出现了大面积的故障,甚至包括支付都不行;而Apple ID/iCloud账户也无法登录。 而且从网友的反馈来看,苹果Apple ID出现
    的头像 发表于 05-12 11:55 2520次阅读