0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

贫电解液锂-硫电池正极的动力学评估

清新电源 来源:新威NEWAR 2023-07-14 09:57 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

研究背景

可充电电池在扩大可再生能源电力生产和应用规模方面发挥着关键作用。从20世纪90年代商业化的锂离子电池通过为电子产品和电动汽车提供动力,在便利的现代生活方式方面取得了巨大进步。然而,由于负极和正极的离子脱嵌反应机制,传统锂离子电池的能量密度正接近极限。迫切需要先进的高能量密度可充电电池以满足不断增长的需求和能量密度敏感的应用,如飞行器和航天器。锂硫(Li-S)电池在实现超越锂离子电池的实际高能量密度方面具有很大的前景。贫电解质条件是实现高能量密度锂电池的先决条件,尽管性能有所提高,但对贫电解质条件下硫正极动力学的基本理解仍然不足,特别是导致性能下降的关键动力学限制因素。因此,贫电解质条件下硫正极的关键动力学限制因素仍然存在争议。需要综合动力学分析,找到关键的动力学限制因素,指导实际条件下合理的动力学推广策略设计和电池性能提升。

文章简介

针对以上问题,北京理工大学黄佳琦教授与李博权副研究员团队对硫正极的极化进行了系统解耦,以确定贫电解质条件下锂硫电池中的关键动力学限制因素。具体而言,作者开发了一种电化学阻抗谱组合恒电流间歇滴定技术方法,将正极极化解耦为活化、浓度和欧姆部分。其中,随着电解质与硫比(E/S比)的降低,硫化锂成核过程中的活化极化成为主导极化,并且界面电荷转移动力学缓慢是贫电解质条件下电池性能下降的主要原因。因此,作者提出了一种双(氟磺酰)亚胺锂电解液来降低活化极化,采用该电解质的Li-S电池在0.2 C时,在低E/S比为4 μL mg−1的情况下提供了985 mAhg−1的放电容量。本工作确定了贫电解质锂硫电池的关键动力学限制因素,为设计合理的推广策略以实现先进锂硫电池提供了指导。

图文解读

bf5940be-21d1-11ee-962d-dac502259ad0.png

1.不同E/S比下硫极放电过程的热力学和动力学.(a)硫正极在E/S = 16、8、6、5、4 μL mg−1时的放电过程动力学曲线。E/S比分别为16、8、6、5和4μL mg−1时(b)硫溶解阶段、(c)Li2S成核阶段和(d)Li2S生长阶段的热力学(红色)和动力学(蓝色)电压。

bf64cb32-21d1-11ee-962d-dac502259ad0.png

2. EIS-GITT动力学极化解耦方法。(a)界面电荷转移、反应物质扩散(Li2Sx、6≤x、Li2Sy、4≤x≤6)和电解液中离子传导的电极反应过程示意图,分别产生ηac、ηcon和ηohm。动力学极化解耦法在GITT(b)和EIS(c)测量中的机理。

bf79431e-21d1-11ee-962d-dac502259ad0.png

3.不同E/S比下解耦极动力学极化分析。(a)ηac、(b)ηcon和(c)ηohm在E/S比= 16、8、6、5和4 μL mg−1时在0.08 C电流密度下放电时的变化。E/S比= 16、8、6、5和4 μL mg−1时(d)硫溶解阶段、(e)Li2S成核阶段和(f)Li2S生长阶段的极化分析。

bf99a5dc-21d1-11ee-962d-dac502259ad0.png

4.使用LiFSI电解质的贫电解质锂电池的动力学评价和电池性能。(a)在E/S比为4 μL mg−1,电流密度为0.08 C时,采用LiFSI电解质或LiTFSI电解质的贫电解质锂电池的全极化分析,(b)硫溶解、Li2S成核和Li2S生长阶段的解耦激活极化。锂硫电池在E/S比= 4 μLmg−1时的(c)倍率性能及(d)不同倍率下的充放电曲线。

研究结论

综上所述,本工作报道了贫电解质锂电池硫正极动力学的关键动力学限制因素是通过对工作条件下的动力学极化解耦确定的。作者采用EIS-GITT方法将硫正极放电时的总η解耦为ηac、ηcon和ηohm,并对不同E/S比条件下的正极动力学进行了系统评价。随着电解质体积的减小,Li2S成核过程的总η最大。ηac是Li2S成核阶段的关键动力学限制因素,是导致贫电解质锂电池动力学迟缓和性能下降的主要原因。为了解决上述问题,使用LiFSI锂盐代替传统的LiTFSI,使用LiFSI的电解质有效地改善了贫电解质Li-S电池的缓慢正极动力学。使用LiFSI电解质的锂电池在整个放电过程中ηac明显降低,放电容量为985 mAhg−1, E/S比为4 μL mg−1,电流密度为0.2 C。研究表明,LiPSs的界面电荷转移是关键的动力学限制过程,而ηac是贫电解质Li-S电池的关键动力学限制因素。上述基本认识为促进贫电解质Li-S电池硫氧化还原动力学的合理和有针对性的策略设计提供了启发,本文提出的EIS-GITT极化解耦方法有助于理解实际工作条件下的电极过程。




审核编辑:刘清

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 锂离子电池
    +关注

    关注

    85

    文章

    3529

    浏览量

    80237
  • 动力电池
    +关注

    关注

    113

    文章

    4665

    浏览量

    81080
  • 电解质
    +关注

    关注

    6

    文章

    827

    浏览量

    21243
  • 电解液
    +关注

    关注

    10

    文章

    876

    浏览量

    23718
  • 锂硫电池
    +关注

    关注

    7

    文章

    100

    浏览量

    14256

原文标题:北京理工大学黄佳琦教授团队最新JACS:贫电解液锂-硫电池正极的动力学评估

文章出处:【微信号:清新电源,微信公众号:清新电源】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    突破性双层界面设计:非对称醚助力宽温金属电池性能飞跃

    ,硫化聚丙烯腈(SPAN)正极虽较传统正极更稳定,但在醚类电解液中易发生S–S键断裂并生成可溶多硫化物(LiPS),导致容量快速衰减。因
    的头像 发表于 12-11 18:03 36次阅读
    突破性双层界面设计:非对称醚助力宽温<b class='flag-5'>锂</b>金属<b class='flag-5'>电池</b>性能飞跃

    新能源储能电解液怎么选择位传感器?

    电解液大多具有强腐蚀性、高导电性,部分还存在挥发性强、对洁净度要求高的特点,这使得位传感器选型需重点攻克 防腐蚀、防污染、适配工况精度三大核心难题。选型时需先明确电解液特性与使用场景,再从传感器类型、材质、防护性能等维度筛选
    的头像 发表于 11-24 15:17 800次阅读

    新能源储能电解液高压输送与充装系统的安全核心

    在大容量新能源储能系统(如百兆瓦级液流电池储能电站)中,电解液需通过高压输送(压力通常0.5-2MPa)实现快速循环与充装,以满足系统高功率输出需求。高压环境下,电解液的流动性、介电特性发生变化,且
    的头像 发表于 11-21 16:57 1820次阅读

    新能源储能电解液在线再生循环的动态监测核心

    为提升新能源储能系统的经济性与环保性,电解液在线再生与循环利用技术逐渐成为行业研究热点。该技术通过在储能系统运行过程中,对性能衰减的电解液进行实时净化、成分修复与浓度调整,实现电解液的“边用边再生
    的头像 发表于 11-20 18:07 1794次阅读

    退役储能电解液回收处理环节的环保监测关键-电容式位传感器

    随着新能源储能系统规模化应用,退役电解液的回收处理成为保障环境安全、实现资源循环的重要环节。退役电解液成分复杂,含有重金属离子、腐蚀性盐类及有机杂质,且不同类型储能电池(如锂电池、液流
    的头像 发表于 11-18 16:42 1195次阅读
    退役储能<b class='flag-5'>电解液</b>回收处理环节的环保监测关键-电容式<b class='flag-5'>液</b>位传感器

    电解电容的 “环保转身”:无汞电解液如何让它从 “电子垃圾” 变 “可回收物”?

    近年来,随着全球环保法规日益严格和电子废弃物问题日益突出,铝电解电容这一电子行业的基础元件正经历着一场深刻的"环保革命"。传统铝电解电容因含汞电解液而被贴上"电子垃圾"的标签,而新型无汞电解液
    的头像 发表于 08-19 17:04 559次阅读
    铝<b class='flag-5'>电解</b>电容的 “环保转身”:无汞<b class='flag-5'>电解液</b>如何让它从 “电子垃圾” 变 “可回收物”?

    锂离子电池电解液浸润机制解析:从孔隙截留到工艺优化

    在锂离子电池制造领域,美能光子湾始终怀揣着推动清洁能源时代加速到来的宏伟愿景,全力助力锂离子电池技术的革新。在锂离子电池制造过程中,电解液浸润是决定
    的头像 发表于 08-05 17:49 1880次阅读
    锂离子<b class='flag-5'>电池</b><b class='flag-5'>电解液</b>浸润机制解析:从孔隙截留到工艺优化

    攻克锂电池研发痛点-电解液浸润量化表征

    ;amp;痛点解决方案磷酸铁极片辊压前后对比实验 痛点:辊压工艺导致孔隙结构变化,降低电解液浸润效率,影响电池充放电性能 实验结果:辊压后极片孔隙减小,浸润速度显著减慢 解决方案: 优化辊压压力参数
    发表于 07-14 14:01

    Adams多体动力学仿真解决方案全面解析

    Adams/Controls机电控系统联合仿真机器人、航空航天 Adams/Flex柔性体动力学分析轻量化结构设计 Adams/View参数化建模与可视化前处理概念设计阶段验证 三、关键技术
    发表于 04-17 17:24

    非接触式位传感器精准检测电解液位优选方案

    在现代化工业生产中,电解液位检测是一项至关重要的任务,其准确性直接关系到设备的稳定运行和产品质量。传统接触式位传感器由于直接接触电解液,容易受到腐蚀、污染和粘附等问题,从而导致测量
    的头像 发表于 04-12 10:53 1062次阅读
    非接触式<b class='flag-5'>液</b>位传感器精准检测<b class='flag-5'>电解液</b><b class='flag-5'>液</b>位优选方案

    轮毂电机驱动电动汽车垂向动力学控制研究综述

    从轮毂电机驱动电动汽车整车动力学特性、簧下质量增加对车辆动力学性能影响以及轮 毂电机不平衡电磁力对车辆动力学性能影响 3 个方面,介绍了 国 内外轮毂驱动电动汽车垂向动力 学研究现状,
    发表于 03-07 15:21

    航空发动机整机动力学有限元模型建立方法

    本文针对航空发动机的转子/整机动力学问题,使用两自由度动力学模型对转、静子的振动耦合机理进行了解释,指出传统转子动力学模型将导致最大67%的计算误差,因此需要采用整机动力学模型对发 动
    的头像 发表于 03-03 09:29 1761次阅读
    航空发动机整机<b class='flag-5'>动力学</b>有限元模型建立方法

    王东海最新Nature Materials:全固态电池新突破

    的利用率较低,反应动力学较为缓慢。为克服这些局限性,科学家们尝试通过设计导电添加剂、优化电解质界面和提升界面结构来改善电池性能。然而,这些策略未能根本性改变固态转化反应对三相界面的依
    的头像 发表于 01-09 09:28 1860次阅读
    王东海最新Nature Materials:全固态<b class='flag-5'>锂</b><b class='flag-5'>硫</b><b class='flag-5'>电池</b>新突破

    【Simcenter STAR-CCM+】通过快速准确的CFD仿真加速空气动力学创新

    SimcenterSTAR-CCM+车辆外部空气动力学特性优势通过快速准确的CFD仿真加速空气动力学创新使用曲面包络和自动网格划分,快速准备包含数千个零件的复杂几何形状通过快速准确的稳态仿真提高
    的头像 发表于 12-27 11:02 1956次阅读
    【Simcenter STAR-CCM+】通过快速准确的CFD仿真加速空气<b class='flag-5'>动力学</b>创新

    水系电解液宽电压窗口设计助力超长寿命水系钠离子电池

    【研究背景】水系钠离子电池(ASIBs)具有高安全、低成本、快速充电等优点,在大规模储能中显示出巨大的潜力。然而,传统的低浓度水系电解液(salt-in-water electrolytes
    的头像 发表于 12-20 10:02 2694次阅读
    水系<b class='flag-5'>电解液</b>宽电压窗口设计助力超长寿命水系钠离子<b class='flag-5'>电池</b>