0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

聊聊BMS测试的那些事儿

汉通达 2021-12-17 15:32 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

BMS是个功能特别复杂的电子设备。在其设计阶段,需要对原型的功能进行验证;在生产阶段,需要对产品的功能进行测试;如果设备出现故障,需要进行检修。在这些阶段都需要有对应的测试设备来支持。
BMS的功能包括3个主要方面:1)对电池组的工作状态的监测与管理——单体和电池组的电压监测、电流监测、温度监测、SOC估算,均衡控制等
2)对电池组异常状态的管理——单体和电池组的过充、过放、过流、温度超限、失衡等3)对电池组故障的管理——传感器丢失、单体故障等
4)BMS的各项功能所涉及到包括数据采集、过程控制、数据通讯等多种技术,应用ADC、DIO、PWM、CAN、继电器等多种端口和设备,功能和算法都很复杂。
为了对这么复杂的功能进行全面测试,很多情况下还要进行性能测试和评估,目前主要的方法有2种:第一种方法:将被管理的电池组实物与BMS对接进行测试

这种测试方法最直接,所有的测试参数都与实际情况一致,看似比较理想,但是实际应用的时候存在比较多的问题:

1)测试时间长——电池组的充放都需要比较多的时间,要完成一次工作循环必须遵从实物的特性,等待的时间比较长,难以进行批量测试

2)需要的辅助设备多——为了模拟各种环境状态,需要大型恒温箱等辅助设施

3)调整参数困难——如果用于BMS单项功能的验证和调试,在开始试验之前要通过充电放电来调整电池组的状态

4)可控性差——单体的容量、内阻等重要参数都受到实物的限定,没有调整的空间。受制于电池组装配工艺等多方面因素影响,也无法调整任意一个单体的SOC等运行状态。另外随着循环次数增加,电池组自身的状态也会发生变化

5)存在安全隐患——电池组是个储存很大能量的装置,这种测试方式对操作人员的人身安全存在威胁

6)能源消耗大——电池组的充电和放电需要大量能源

7)系统成本高——电池组自身价格比较高,尤其是大功率的电池组;相关的维护费用也很高。

8)实际状态未知——这一点是最致命的。电池组中每个电池单体的电压、温度、均衡电流等参数的设定值是未知的,用户只能获取到测量值,无法比对。

所以这个方法只适用于验证BMS在正常工作范围内的表现,而不适合应用于BMS的开发调试和生产测试

第二种方法:基于仿真电池组的测试和验证。

1)通过高精度的程控电池模拟器来仿真电池单体的电压,并具有一定的电流输出和吸收能力,仿真放电和充电过程

2)通过高精度的程控电阻来仿真各温度传感器

3)通过高精度的程控DAC来仿真电流传感器

4)通过数字IO、DAC、CAN总线通讯模块、程控电源等辅助设备实现其它功能端口的仿真以及与BMS的通讯。

这种方法基于成熟的计算机技术和测试仪器硬件平台,能够通过应用软件快速调整电池组的工作状态,提高测试效率和安全性,扩展性好。虽然一次投资比较高,但是长期综合效益明显。如果对多种BMS进行测试,成本优势更加明显。非常适合BMS开发,以及大批量的生产测试。

对BMS进行测试的关键是对电池组进行高精度的仿真。仿真的方法大致分为两类:

1)开环仿真。

直接仿真电池组的运行参数,预先设定所有数据和变化过程。这种方法主要用于快速检测BMS的基本功能。对主控计算机的性能要求不高,软件相对比较精简,整体成本较低。特别适合在BMS的研发阶段进行功能验证,以及对量产BMS进行测试

2)闭环仿真。

设定部分参数及变化过程,其它参数则依据被测BMS的反馈而进行自动调整。这种方法功能全面,可以用于对BMS的各种高级功能进行测试。通常在这种类型的测试系统中会置入某种类型的电池数学模型,输出特性则依据数学模型的实时运算结果,对计算机性能要求很高,软件开发的工作量大,成本高。但是如果模型建立的准确,仿真结果会更加符合真实电池组的特性。适合在BMS研发阶段进行复杂功能的验证。

1.

在开环测试中,主要的仿真参数如下:

第一类,直接仿真参数:

电池单体电压——根据BMS管理的单体数量配置仿真电池单体的数量,每个仿真单体的输出电压可以通过程序设定。电压的可调范围会大于真实电池,例如我公司用于仿真锂离子电池的设备,输出电压下限会低至0.5V甚至0V,上限可达5V,足以仿真严重的过充和过放。电压的准确度可以达到1mV

电池组总电压——虽然总电压可以由仿真单体串联所得,但是如果对具备独立的总电压测量端口的BMS进行测试,可以通过程控直流电源直接给出总电压,以避免多个单体的累积误差

电池组总电流——大部分BMS是通过外部的电流传感器获取总电流(例如霍尔传感器),在仿真测试中可以通过DAC来仿真电流传感器的输出。这样做的好处是,第一可以通过软件支持多种不同特性的传感器,第二可以避免使用庞大、昂贵的大电流程控直流电源和电子负载

电池单体的温度——通过高精度程控电阻来仿真各个温度传感器。以应用比较多的NTC型传感器为例,我公司生产的程控电阻模块,其电阻范围10欧~1M,仿真温度范围可达-100℃~300℃,分辨率可达0.1℃,远超过实际传感器的能力,可以准确仿真各种极端工况。避免了使用恒温箱,可以分别设定各传感器的温度值,仿真温度场,同时还可以仿真传感器短路、开路等故障情况

其它IO端口——包括DIO、PWM、CAN总线通讯等端口

第二类,间接仿真参数:

均衡电流——均衡电流取决于仿真电池单体的输出能力,实际数值由BMS决定。一般用于被动均衡测试的仿真单体最大可以输出约300mA的电流。

电池内阻——电池内阻可以通过总电流和单体电压的变化过程来体现

SOC——SOC可以通过单体电压、内阻等进行设定,但是很多情况下开环测试中要仿真SOC,需要针对被测BMS的SOC算法来进行针对性设计

出于性价比的考虑,为了检测BMS的全功能,一般需要采取多通道、互相隔离的电池仿真器,可以覆盖新能源电池的单体分布电压及多节串联电压,而我公司生产的UI100系列核心模块正是为了解决这一测试方案而研发的,结构简洁,功能全面,完美覆盖BMS功能测试所需的各项技术指标。

我公司生产的用于BMS测试的核心模块技术参数如下表所示:

电池模拟器

单体电压

0~5V

电压输出精度

优于±1mV

步进精度

<0.5mV

隔离电压

±1500V

安全保护

短路保护,极性反转保护,过热保护,多通道互锁结构

温度传感器模拟器

可模拟传感器类型

NTC,PTC,PT100,PT1000等各种电阻输出的温度传感器,如需模拟数字输出传感器请联系我公司

通道数

不限

阻值范围

10Ω~1MΩ

输出阻值精度

0.5%

步进精度

1 Ω

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    测试效率低?一键解锁BMS高效验证指南

    北汇信息基于自有的BMS测试环境,可以为客户提供相应的测试服务。
    的头像 发表于 10-23 16:39 1494次阅读
    <b class='flag-5'>测试</b>效率低?一键解锁<b class='flag-5'>BMS</b>高效验证指南

    BMS电池管理系统测试架构

    基于对BMS测试挑战的深刻理解,费思科技开发了完整的BMS测试解决方案。费思的方案严格参照国标GB/T 34131-2023《电力储能用电池管理系统》和GB/T 38661-2020《
    的头像 发表于 10-10 14:35 291次阅读
    <b class='flag-5'>BMS</b>电池管理系统<b class='flag-5'>测试</b>架构

    聊聊 Webpack 那些安全事儿:打包风险与防护小技巧

    Webpack 作为前端工程化的核心工具,几乎成为现代 Web 应用打包的标配。它通过模块合并、代码压缩、依赖管理等功能提升开发效率,但也因配置复杂、代码混淆等特性,潜藏着诸多安全风险。本文结合实战场景,拆解 Webpack 在开发与运行中的安全隐患,以及攻防双方的应对策略。     一 Webpack 打包的潜在安全风险   1. 敏感信息泄露:被 "打包" 的秘密 Webpack 在打包时会递归处理所有依赖模块,若开发中未对敏感信息做过滤,可能导致密钥、API 地址、后
    的头像 发表于 09-02 10:22 501次阅读
    <b class='flag-5'>聊聊</b> Webpack <b class='flag-5'>那些</b>安全<b class='flag-5'>事儿</b>:打包风险与防护小技巧

    聊聊锂电 BMS 核心组件标准化对行业的那些实在价值

    在锂电产业快速发展的当下,锂离子电池管理系统(BMS)的可靠性和稳定性一直是行业关注的重点。而 BMS 里的微控制单元(MCU)、电量计(SOC)、ADC 芯片和电源管理芯片,作为核心组件,它们的性能直接影响着整个电池系统的表现。
    的头像 发表于 07-29 09:57 408次阅读

    BMS保护板测试仪:电池安全与性能的守护者

    板承担着实时监测、精准控制和多重保护的重任。而BMS保护板测试仪,则是确保这一关键组件功能正常、性能可靠的“幕后英雄”。 核心功能:全面测试与精准评估 BMS保护板
    的头像 发表于 07-17 10:24 458次阅读

    普源示波器MHO5106在新能源BMS测试中的完整解决方案

    随着新能源汽车行业的快速发展,电池管理系统(BMS)作为核心组件,负责电池状态监测、能量分配与安全控制,其性能直接关系到车辆的续航、安全性与可靠性。在BMS的研发、测试与故障诊断中,精准的信号分析
    的头像 发表于 06-23 14:13 393次阅读
    普源示波器MHO5106在新能源<b class='flag-5'>BMS</b><b class='flag-5'>测试</b>中的完整解决方案

    楼宇管理系统 (BMS) 网络安全的力量

    引入的互联网连接会扩大攻击面,让那些想要渗透智能楼宇的网络犯罪分子有机可乘。BMS 通常使用不安全的协议和旧版系统,没有足够的安全控制,而许多企业才开始努力了解正在使用的 BMS 数量和种类。这些情况导致企业范围内对管理
    的头像 发表于 06-18 11:45 600次阅读

    普源示波器DHO5108在新能源BMS测试中的完整解决方案

    随着新能源汽车、储能系统等新能源技术的快速发展,电池管理系统(BMS)作为核心部件,其性能测试与可靠性验证成为行业关注的焦点。BMS需要实时监测电池电压、电流、温度等参数,并进行复杂的数据
    的头像 发表于 06-06 14:21 479次阅读
    普源示波器DHO5108在新能源<b class='flag-5'>BMS</b><b class='flag-5'>测试</b>中的完整解决方案

    BMS HIL测试技术演进:高压架构、多域融合与储能系统应用解析

    随着新能源汽车及储能系统高压化、智能化发展,BMS HIL测试技术成为验证电池安全与性能的核心手段。北汇信息基于Vector工具链的BMS HIL方案演变,涵盖400V至800V高压架构升级、分布式
    的头像 发表于 05-19 14:56 1556次阅读
    <b class='flag-5'>BMS</b> HIL<b class='flag-5'>测试</b>技术演进:高压架构、多域融合与储能系统应用解析

    B10 BMS技术知识初探(上、下)

    课程名称: BMS技术知识初探课程目标: 可充电电池已是人们生活中不可缺少的组成部分,基于电池技术为基础的电动汽车、储能行业,更是新能源发展的重要标志。而BMS技术是电池安全的重要保障,是电池安全
    发表于 05-02 11:04

    BMS保护板测试仪:电池安全的“智能卫士”

    ,在电池出现过充、过放、过热等异常情况时及时采取措施,防止电池进一步损坏,避免火灾、爆炸等安全事故的发生。在这一背景下,BMS保护板测试仪应运而生,成为保障电池安全与性能的关键设备。 BMS保护板
    的头像 发表于 04-24 15:20 540次阅读

    智能BMS测试仪:电池管理系统的“智慧守护者”

    在新能源汽车、储能系统等电池驱动领域飞速发展的今天,电池管理系统(BMS)的重要性日益凸显。而智能BMS测试仪,作为电池管理系统的“智慧守护者”,正以其独特的优势和创新的技术,为电池的安全、高效运行
    的头像 发表于 04-09 15:19 3177次阅读

    极端温度下的守护者:BMS测试仪如何验证电池热失控防护策略?

    随着新能源汽车与储能系统的快速发展,电池热失控风险成为悬在行业头顶的“达摩克利斯之剑”。极端温度下,电池性能急剧变化,热失控概率呈指数级增长。BMS(电池管理系统)测试设备作为电池安全的“体检医生
    的头像 发表于 03-31 18:00 1033次阅读

    BMS保护板测试仪:电池安全与性能的坚实守护者

    在新能源汽车、储能系统、电动工具等电池驱动型产品日益普及的今天,电池的安全性和性能成为了人们关注的焦点。而BMS保护板测试仪作为电池管理系统(BMS)中不可或缺的一部分,为电池的安全运行提供了有力
    的头像 发表于 02-19 18:49 649次阅读

    低压储能应用典型的BMS结构和MPS特色方案

    上期我们深扒了高压储能应用典型的 BMS 结构,详细拆解了 MPS 高压储能方案。今天我们来聊聊低压储能。相比起高压储能,低压储能离我们的日常生活更近。或许,此刻你正端详着自己 20000 毫安的充电宝陷入沉思:低压储能?芥!不就大号充电宝嘛!?
    的头像 发表于 01-15 15:36 1646次阅读
    低压储能应用典型的<b class='flag-5'>BMS</b>结构和MPS特色方案