0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

高端粉体材料氮化硼-氧化铝-氢氧化铝介绍

向欣电子 2022-01-24 10:37 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

关键词:5GTIM, EMI ,EMCESD, 绝缘,透波,高导热,国产高端新材料

导语:随着电子设备的性能和功能的提高,每个设备产生的热量增加,热量有效地散发、消散和冷却热量很重要。对于5G智能手机和AR/VR设备等高性能移动产品,由于采用高性能IC和追求减轻重量的高度集成设计,导致散热部件的安装空间受到限制,因此利用高导热垫片和导热凝胶等TIM材料来更好地散热。

什么是氮化硼?

5dd5a66c-7ba5-11ec-bcb6-dac502259ad0.png

氮化硼是由氮原子和硼原子所构成的晶体。化学组成为43.6%的硼和56.4%的氮,具有四种不同的变体:六方氮化硼(HBN)、菱方氮化硼(RBN)、立方氮化硼(CBN)和纤锌矿氮化硼(WBN)。

5e0e1f1a-7ba5-11ec-bcb6-dac502259ad0.png

5e25a96e-7ba5-11ec-bcb6-dac502259ad0.png

氮化硼问世于100多年前,最早的应用是作为高温润滑剂的六方氮化硼,不仅其结构而且其性能也与石墨极为相似,且自身洁白,所以俗称:白石墨。

氮化硼(BN)陶瓷是早在1842年被人发现的化合物。国外对BN材料从第二次世界大战后进行了大量的研究工作,直到1955年解决了BN热压方法后才发展起来的。美国金刚石公司和联合碳公司首先投入了生产,1960年已生产10吨以上。

1957年R·H·Wentrof率先试制成功CBN,1969年美国通用电气公司以商品Borazon销售,1973年美国宣布制成CBN刀具。

1975年日本从美国引进技术也制备了CBN刀具。

1979年首次成功采用脉冲等离子体技术在低温低压卜制备崩c—BN薄膜。

20世纪90年代末,人们已能够运用多种物理气相沉积(PVD)和化学气相沉积(CVD)的方法制备c-BN薄膜。

从中国国内看,发展突飞猛进,1963年开始BN粉末的研究,1966年研制成功,1967年投入生产并应用于我国工业和尖端技术之中。

5e3ede5c-7ba5-11ec-bcb6-dac502259ad0.png

物质特性

CBN通常为黑色、棕色或暗红色晶体,为闪锌矿结构,具有良好的导热性。硬度仅次于金刚石,是一种超硬材料,常用作刀具材料和磨料。

氮化硼具有抗化学侵蚀性质,不被无机酸和水侵蚀。在热浓碱中硼氮键被断开。1200℃以上开始在空气中氧化。真空时约2700℃开始分解。微溶于热酸,不溶于冷水,相对密度2.29。压缩强度为170MPa。在氧化气氛下最高使用温度为900℃,而在非活性还原气氛下可达2800℃,但在常温下润滑性能较差。氮化硼的大部分性能比碳素材料更优。对于六方氮化硼:摩擦系数很低、高温稳定性很好、耐热震性很好、强度很高、导热系数很高、膨胀系数较低、电阻率很大、耐腐蚀、可透微波或透红外线。

5e541790-7ba5-11ec-bcb6-dac502259ad0.png

物质结构

氮化硼六方晶系结晶,最常见为石墨晶格,也有无定形变体,除了六方晶型以外,氮化硼还有其他晶型,包括:菱方氮化硼(r-BN)、立方氮化硼(c-BN)、纤锌矿型氮化硼(w-BN)。人们甚至还发现像石墨稀一样的二维氮化硼晶体。

通常制得的氮化硼是石墨型结构,俗称为白色石墨。另一种是金刚石型,和石墨转变为金刚石的原理类似,石墨型氮化硼在高温(1800℃)、高压(8000Mpa)[5~18GPa]下可转变为金刚型氮化硼。是新型耐高温的超硬材料,用于制作钻头、磨具和切割工具。

5e71ac1a-7ba5-11ec-bcb6-dac502259ad0.png

应用领域

1. 金属成型的脱模剂和金属拉丝的润滑剂。

2. 高温状态的特殊电解、电阻材料。

3. 高温固体润滑剂,挤压抗磨添加剂,生产陶瓷复合材料的添加剂,耐火材料和抗氧化添加剂,尤其抗熔融金属腐蚀的场合,热增强添加剂、耐高温的绝缘材料。

4. 晶体管的热封干燥剂和塑料树脂等聚合物的添加剂。

5. 压制成各种形状的氮化硼制品,可用做高温、高压、绝缘、散热部件。

6. 航天航空中的热屏蔽材料。

7. 在触媒参与下,经高温高压处理可转化为坚硬如金刚石的立方氮化硼。

8. 原子反应堆的结构材料。

9. 飞机、火箭发动机的喷口。

10.高压高频电及等离子弧的绝缘体。

11.防止中子辐射的包装材料。

12.由氮化硼加工制成的超硬材料,可制成高速切割工具和地质勘探、石油钻探的钻头。

13.冶金上用于连续铸钢的分离环,非晶态铁的流槽口,连续铸铝的脱模剂。

14.做各种电容器薄膜镀铝、显像管镀铝、显示器镀铝等的蒸发舟。

15.各种保鲜镀铝包装袋等。

16.各种激光防伪镀铝、商标烫金材料,各种烟标,啤酒标、包装盒,香烟包装盒镀铝等等。

17.化妆品用于口红的填料,无毒又有润滑性,又有光泽。

5e9082de-7ba5-11ec-bcb6-dac502259ad0.png

未来前景

由于钢铁材料硬度很高,因而加工时会产生大量的热,金刚石工具在高温下易分解,且容易与过渡金属反应,而c-BN材料热稳定性好,且不易与铁族金属或合金发生反应,可广泛应用于钢铁制品的精密加工、研磨等。c-BN除具有优良的耐磨性能外,耐热性能也极为优良,在相当高的切削温度下也能切削耐热钢、铁合金、淬火钢等,并且能切削高硬度的冷硬轧辊、渗碳淬火材料以及对刀具磨损非常严重的Si-Al合金等。实际上,由c-BN晶体(高温高压合成)的烧结体做成的刀具、磨具已应用于各种硬质合金材料的高速精密加工中。

c-BN作为一种宽禁带(带隙6.4 eV)半导体材料,具有高热导率、高电阻率、高迁移率、低介电常数、高击穿电场、能实现双型掺杂且具有良好的稳定性,它与金刚石、SiC和GaN一起被称为继Si、Ge及GaAs之后的第三代半导体材料,它们的共同特点是带隙宽,适用于制作在极端条件下使用的电子器件。与SiC和GaN相比,c-BN与金刚石有着更为优异的性质,如更宽的带隙、更高的迁移率、更高的击穿电场、更低的介电常数和更高的热导率。显然作为极端电子学材料,c-BN与金刚石更胜一筹。然而作为半导体材料金刚石有它致命的弱点,即金刚石的n型掺杂十分困难(其n型掺杂的电阻率只能达到102Ω·cm,远远未达到器件标准),而c-BN则可以实现双型掺杂。例如,在高温高压合成以及薄膜制备过程中,添加Be可得到P型半导体;添加S、C、Si等可得到n型半导体。因此综合看来c-BN是性能最为优异的第三代半导体材料,不仅能用于制备在高温、高频、大功率等极端条件下工作的电子器件,而且在深紫外发光和探测器方面有着广泛的应用前景。事实上,最早报道了在高温高压条件下制成的c-BN发光二极管,可在650℃的温度下工作,在正向偏压下二极管发出肉眼可见的蓝光,光谱测量表明其最短波长为215 nm(5.8 eV)。c-BN具有和GaAs、Si相近的热膨胀系数,高的热导率和低的介电常数,绝缘性能好,化学稳定性好,使它成为集成电路的热沉材料和绝缘涂覆层。此外c-BN具有负的电子亲和势,可以用于冷阴极场发射材料,在大面积平板显示领域具有广泛的应用前景。

光学应用方面,由于c-BN薄膜硬度高,并且从紫外(约从200 nm开始)到远红外整个波段都具有高的透过率,因此适合作为一些光学元件的表面涂层,特别适合作为硒化锌(ZnSe)、硫化锌(ZnS)等窗口材料的涂层。此外,它具有良好的抗热冲击性能和商硬度,有望成为大功率激光器和探测器的理想窗窗口材料。

什么是氧化铝?

5eacd132-7ba5-11ec-bcb6-dac502259ad0.png

氧化铝(aluminium oxide)是一种无机物,化学式Al2O3,是一种高硬度的化合物,熔点为2054℃,沸点为2980℃,在高温下可电离的离子晶体,常用于制造耐火材料。

工业氧化铝是由铝矾土(Al2O3·3H2O)和硬水铝石制备的,对于纯度要求高的Al2O3,一般用化学方法制备。Al2O3有许多同质异晶体,已知的有10多种,主要有3种晶型,即α-Al2O3、β-Al2O3、γ-Al2O3。其中结构不同性质也不同,在1300℃以上的高温时几乎完全转化为α-Al2O3

5ec55b30-7ba5-11ec-bcb6-dac502259ad0.png

氧化铝是铝的稳定氧化物,化学式为Al2O3。在矿业、制陶业和材料科学上又被称为矾土。

5ed62104-7ba5-11ec-bcb6-dac502259ad0.png

分子结构图

性状:难溶于水的白色固体,无臭、无味、质极硬,易吸潮而不潮解(灼烧过的不吸湿)。氧化铝是典型的两性氧化物(刚玉是α形属于六方最密堆积,是惰性化合物,微溶于酸碱耐腐蚀[1]),能溶于无机酸和碱性溶液中,几乎不溶于水及非极性有机溶剂;相对密度(d204)4.0;熔点2050℃。

储存:密封干燥保存。

用途:用作分析试剂、有机溶剂的脱水、吸附剂、有机反应催化剂、研磨剂、抛光剂、冶炼铝的原料、耐火材料。

5efcf824-7ba5-11ec-bcb6-dac502259ad0.png

氧化铝含有元素铝和氧。若将铝矾土原料经过化学处理,除去硅、铁、钛等的氧化物而制得的产物是纯度很高的氧化铝原料,Al2O3含量一般在99%以上。矿相是由40%~76%的γ- Al2O3和24%~60%的α- Al2O3组成。γ- Al2O3于950~1200℃可转变为α- Al2O3,同时发生显著的体积收缩。

什么是氢氧化铝?

5f27bae6-7ba5-11ec-bcb6-dac502259ad0.png

氢氧化铝是一种无机物,化学式Al(OH)3,是氢氧化物。氢氧化铝既能与酸反应生成盐和水又能与强碱反应生成盐和水,因此它是一种两性氢氧化物。由于又显一定的酸性,所以又可称之为铝酸(H3AlO3)。但实际与碱反应时生成的是四羟基合铝酸盐([Al(OH)4]-)。因此通常在把它视作一水合偏铝酸(HAlO2·H2O),按用途分为工业级和医药级两种。

5f37ef24-7ba5-11ec-bcb6-dac502259ad0.png

5f53f62e-7ba5-11ec-bcb6-dac502259ad0.png

基本性质

CAS号:21645-51-2

分子式:Al(OH)3

5f6c9210-7ba5-11ec-bcb6-dac502259ad0.png

分子量:78.004

精确质量:77.98980

PSA:60.69000。

物化性质

外观与性状:白色非晶形的粉末

密度:2.40g/cm3

熔点:300℃

水溶解性:不溶

储存条件:库房通风低温干燥

氢氧化铝与酸反应:Al(OH)3+3HCl → AlCl3+3H2O

Al(OH)3+3H+→Al3++3H2O

氢氧化铝与碱反应:Al(OH)3+NaOH → Na[Al(OH)4]

氢氧化铝在碱性环境中异构反应:Al(OH)3→HAlO2+H2O

Al(OH)3+OH-→AlO2-+2H2O

氢氧化铝受热分解:

5f82d0a2-7ba5-11ec-bcb6-dac502259ad0.png

氢氧化铝水中两种电离:

1、Al(OH)3⇋Al3++ 3OH-(碱式电离)

2、Al(OH)3+H2O⇋[Al(OH)4]-+H+(酸式电离)

其中的[Al(OH)4]-中学上习惯写成AlO2-,但是实际上这是错误的。

一般所谓的氢氧化铝实际上是指三氧化二铝的水合物。如向铝盐溶液中加入氨水或弱碱而得到的白色胶状沉淀,其含水量不定,组成也不均匀,统称为水合氧化铝。只有在铝酸盐溶液中(含有Al(OH)4-离子)的溶液中通CO2才可得到真正的氢氧化铝。

结晶的氢氧化铝与水合氧化铝不同,难溶于酸,加热到373K也不脱水,在573K加热2h才能转变为偏氢氧化铝AlO(OH)。

氢氧化铝属两性氢氧化物。由于其存在两种电离形式,既是弱酸,可以有酸式化学式H3AlO3,又是弱碱,可以有碱式化学式Al(OH)3。氢氧化铝具有两性,既能与酸反应又能与碱反应。

氢氧化铝的酸性在于它是路易斯酸可以加合OH-,从而体现碱性

Al(OH)3由于两种电离的存在,可以产生两种盐:铝盐和偏铝酸盐:

⒈铝盐:AlCl3、KAl(SO42·12H2O(明矾),它们的水溶液因Al3+的水解而显酸性

2.偏铝酸盐,NaAlO2、KAlO2,它们的水溶液呈碱性:AlO-+ 2H2O → Al(OH)3+ OH-当两类盐混合时,即发生双水解反应,生成 Al(OH)3

Al3++ 3 AlO-+ 6H2O = 4Al(OH)3

氢氧化铝主要有325目、800目、1250目、5000目四个规格。白色粉末状固体。几乎不溶于水,能凝聚水中的悬浮物,吸附色素。

5f99906c-7ba5-11ec-bcb6-dac502259ad0.png

氢氧化铝是用量最大和应用最广的无机阻燃添加剂。氢氧化铝作为阻燃剂不仅能阻燃,而且可以防止发烟、不产生滴下物、不产生有毒气体,因此,获得较广泛的应用,使用量也在逐年增加。使用范围:热固性塑料热塑性塑料合成橡胶、涂料及建材等行业。同时,氢氧化铝也是电解铝行业所必需氟化铝的基础原料,在该行业氢氧化铝也是得到非常广泛应用。

高端氮化硼-氧化铝-氢氧化铝

氮化硼

5fb92e4a-7ba5-11ec-bcb6-dac502259ad0.png

5fca1a0c-7ba5-11ec-bcb6-dac502259ad0.png

5fe30c1a-7ba5-11ec-bcb6-dac502259ad0.png

5fff6e50-7ba5-11ec-bcb6-dac502259ad0.png

6031b3c4-7ba5-11ec-bcb6-dac502259ad0.png

6047445a-7ba5-11ec-bcb6-dac502259ad0.png

605f9f8c-7ba5-11ec-bcb6-dac502259ad0.png

氧化铝

1、导热氧化铝

6080cd4c-7ba5-11ec-bcb6-dac502259ad0.png

60a15cce-7ba5-11ec-bcb6-dac502259ad0.png

2、球形氧化铝

60b7741e-7ba5-11ec-bcb6-dac502259ad0.png

60d3b2a0-7ba5-11ec-bcb6-dac502259ad0.png

6102e61a-7ba5-11ec-bcb6-dac502259ad0.png

61164e76-7ba5-11ec-bcb6-dac502259ad0.png

氢氧化铝

6176ca3a-7ba5-11ec-bcb6-dac502259ad0.png

6190b1f2-7ba5-11ec-bcb6-dac502259ad0.png

61dc8154-7ba5-11ec-bcb6-dac502259ad0.png

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • emi
    emi
    +关注

    关注

    54

    文章

    3864

    浏览量

    134124
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    电机定子与线圈绝缘散热的核心选择 | 氮化硼PI散热膜

    定子与线圈插入环节的关键绝缘散热材料,有效破解了电机内部“绝缘”与“散热”的双重难题。氮化硼PI散热膜的核心特性:绝缘与散热的双重赋能氮化硼PI散热膜是将纳米级氮
    的头像 发表于 12-01 07:22 298次阅读
    电机定子与线圈绝缘散热的核心选择 | <b class='flag-5'>氮化硼</b>PI散热膜

    氢氧化铝吨包包装机 氧化铝吨袋定量包装秤厂家

    自动化
    jf_84633336
    发布于 :2025年10月16日 16:52:34

    如何解决陶瓷管壳制造中的工艺缺陷

    陶瓷管壳制造工艺中的缺陷主要源于材料特性和工艺控制的复杂性。在原材料阶段,氧化铝氮化铝的粒径分布不均会导致烧结
    的头像 发表于 10-13 15:29 543次阅读
    如何解决陶瓷管壳制造中的工艺缺陷

    MR30分布式I/O模块在化工行业的应用

    氧化铝等化工行业实现稳定生产。本期案例使用的MR30系列分布式I/O产品:MR30-FBC-PN、MR30-16DI、MR30-16DO、MR30-08AI-I4W、MR30-08AO-I。 项目介绍 某化工行业龙头主要产品包括特种氧化
    的头像 发表于 09-05 11:30 473次阅读

    电缆的阻燃程度跟什么因素有关系

    氢氧化铝氢氧化镁)来提升阻燃性。阻燃剂的添加量直接影响阻燃效果,但过量添加可能降低电缆的电气性能。 低烟无卤材料:采用无卤阻燃体系(如磷系阻燃剂),燃烧时烟雾少、毒性低,适用于对环保要求高的场所。 护套
    的头像 发表于 07-16 09:59 493次阅读

    氧化铝氮化铝:陶瓷基板材料的变革与挑战

    在当今电子技术飞速发展的时代,陶瓷基板材料作为电子元器件的关键支撑材料,扮演着至关重要的角色。目前,常见的陶瓷基板材料主要包括氧化铝(Al2O3)、
    的头像 发表于 07-10 17:53 1260次阅读
    从<b class='flag-5'>氧化铝</b>到<b class='flag-5'>氮化铝</b>:陶瓷基板<b class='flag-5'>材料</b>的变革与挑战

    “六边形战士”绝缘TIM材料 | 氮化硼

    引言:氮化硼,散热界的“六边形战士”氮化硼材料的高导热+强绝缘,完美适配5G射频芯片、新能源电池、半导体封装等高功率场景,是高性能绝缘导热材料的首选,为高功率电子设备热管理提供新的解决
    的头像 发表于 04-05 08:20 1047次阅读
    “六边形战士”绝缘TIM<b class='flag-5'>材料</b> | <b class='flag-5'>氮化硼</b>

    高端导热领域:球形氧化铝在新能源汽车中的应用

    球形氧化铝在新能源汽车电池系统中主要应用于热界面材料(TIM)和导热胶/灌封胶,具体包括以下场景: 电池模组散热:作为导热填料,用于电池模组与散热板之间的界面材料,降低热阻,提升散热
    的头像 发表于 04-02 11:09 823次阅读
    <b class='flag-5'>高端</b>导热领域:球形<b class='flag-5'>氧化铝</b>在新能源汽车中的应用

    京朗仕特氢氧化钙化验设备检测方法升级了

    生活中我们经常会看到氢氧化钙的影子,它的应用是非常广泛的,能够应用在建筑、医疗、化工产品生产等多个领域,能够满足不同行业和领域的需求,从而让具有多种功能的氢氧化钙适应不同场景使用要求。而今天我们说
    的头像 发表于 04-01 16:38 469次阅读
    京朗仕特<b class='flag-5'>氢氧化</b>钙化验设备检测方法升级了

    导热硅胶片科普指南:5个关键问题一次说清

    (甲基乙烯基硅氧烷)提供柔韧性和绝缘性。2. 导热填料: 氧化铝(Al₂O₃):导热系数1~15 W/m·K,占比60%~80%。 氮化硼(BN):导热系数5~30 W/m·K,绝缘性强,用于高端场景
    发表于 03-11 13:39

    氮化铝陶瓷基板:高性能电子封装材料解析

    氮化铝陶瓷基板是以氮化铝(AIN)为主要成分的陶瓷材料,具有高热导率、低热膨胀系数、优良电性能和机械性能等特点。它广泛应用于高效散热(如高功率LED和IGBT模块)、高频信号传输(如5G通信和雷达
    的头像 发表于 03-04 18:06 1493次阅读
    <b class='flag-5'>氮化铝</b>陶瓷基板:高性能电子封装<b class='flag-5'>材料</b>解析

    氧化铝陶瓷线路板:多行业应用的高性能解决方案

    氧化铝陶瓷基板,以三氧化二铝为主体材料,具备多种优良性能,包括良好的导热性、绝缘性、耐压性、高强度、耐高温、耐热冲击性和化学稳定性。根据纯度,该基板可分为90瓷、96瓷、99瓷等不同型号,且存在白色
    的头像 发表于 02-27 15:34 650次阅读

    陶瓷电路板:探讨99%与96%氧化铝的性能差异

    氧化铝(Al₂O₃)作为陶瓷印刷电路板(PCB)的核心材料,凭借其出色的热电性能及在多变环境下的高度稳定性,在行业内得到了广泛应用。氧化铝陶瓷基板,主要由高密度、高熔点及高沸点的白色无定形粉末构成
    的头像 发表于 02-24 11:59 871次阅读
    陶瓷电路板:探讨99%与96%<b class='flag-5'>氧化铝</b>的性能差异

    选择性氧化知识介绍

    速率适中,而且氧化后较不容易因为热应力造成上反射镜磊晶结构破裂剥离。砷化铝(AlAs)材料氧化机制普遍认为相对复杂,可能的化学反应过程可能包含下列几项: 通常在室温环境下铝金属表面自然
    的头像 发表于 01-23 11:02 986次阅读
    选择性<b class='flag-5'>氧化</b>知识<b class='flag-5'>介绍</b>

    导热氧化铝粉(DCA-S)增强锂电池散热性能的机理与效果分析

    ,导致电池温度升高。过高的温度不仅会缩短电池的循环寿命,降低其性能,还可能引发热失控,造成安全隐患。因此,如何有效解决锂电池的散热问题,提高其热管理性能,已成为当前电池研究和应用领域亟待解决的关键问题。 1.2 导热氧化铝在锂
    的头像 发表于 01-06 09:38 1636次阅读