0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

半导体所在硅上In线的光致相变机理研究中获进展

半导体芯科技SiSC 来源:半导体芯科技SiSC 作者:半导体芯科技SiS 2023-05-09 15:23 次阅读

来源:半导体研究所

自20世纪初期,量子理论对技术发展做出了重大贡献。尽管量子理论取得了成功,但由于缺乏非平衡量子系统的框架,其应用主要限于平衡系统。超短激光脉冲和自由电子加速器X射线的产生,推动了整个非平衡超快动力学领域的发展。超快现象在物理、化学和生物等领域备受关注,例如光致相变、光诱导退磁、高能离子碰撞和分子化学反应等。非平衡超快领域的实验研究成果颇丰,已成为热点。然而,实验不能给出原子尺度的原子/分子位移,故关于激发态动力学的认知存在争议。为了探讨超快动力学现象,理论模拟至关重要。为推动超快领域的发展以及揭开超快动力学过程中的诸多谜团,中国科学院半导体研究所骆军委团队和汪林望团队合作发展了一系列含时演化的算法,并将这些算法应用于不同领域。

近期,科研人员将此算法应用到Si的(111)表面In线相变中,解决了实验上的较多争议。Si的(111)表面上吸附单个铟原子层,在室温下形成Si(111)-(4×1)-In两个平行锯齿形In链组成的量子线结构(图1b),具有金属性质。当温度降低到125 K以下,In原子重新排列成具有(8×2)重构的四重晶胞扭曲六边形(图1a),伴随周期性晶格畸变产生一维电荷密度波(CDW),并打开带隙成为凝聚态物理中的绝缘体相(窄禁带半导体)(图1c)。激光脉冲辐照可以实现硅上In线在半导体相与金属相间的超快转变。然而,激光脉冲辐照下的硅上In线在转变为半导体相变后其相干声子振荡快速衰减,未出现其他量子相变材料中普遍存在的两个相间来回振荡的现象。

为了研究硅上In线在光致相变后相干声子振荡快速衰减的微观机理。该工作利用含时密度泛函理论(rt-TDDFT)方法模拟了硅上In线(In/Si(111))在激光脉冲辐照下的动力学过程,在理论上重现了实验中(图1g)观察的半导体相转变为金属相的超快过程(图1、2)。研究发现,激光脉冲把硅中的价电子激发到In线的表面态S1和S2导带,且由于S1和S2能带来自单个In锯齿链上In dimer的成键态,光激发形成使该In dimer变长的原子力,驱动In原子朝着半导体相运动,在晶格周期下In原子的集成运动形成CDW相干声子模式,导致结构相变(图3、4)。研究表明,在转变为半导体相后,S1和S2能带切换为跨越两个锯齿In链上的原子,这种能带成分的转换导致原子驱动力的方向旋转约π/6,阻止In原子在CDW声子模式中的集体运动。该研究从局域原子驱动力进行解释,为光致相变过程提供了更简单的物理图像,为实验调控结构相变提供了直观的理论指导。上述模拟均可在PWmat软件中实现。

相关研究成果以Origin of Immediate Damping of Coherent Oscillations in Photoinduced Charge-Density-Wave Transition为题,发表在《物理评论快报》(Physical Review Letters)上。研究工作得到国家自然科学基金国家杰出青年科学基金项目、中科院前沿科学重点研究计划和中科院战略性先导科技专项等的支持。

「链接」

wKgZomRZ9OuAWEpjAAIIVxIpibE046.jpg

图1.光诱导半导体相(CDW)到金属相相变的动力学模拟及实验对比

wKgaomRZ9OyAMkV0AAHsnjeIetY714.jpg

图2.原子结构、原子受力和光激发电子分布随时间的演化

苏州会议

雅时国际(ACT International)将于2023年5月,在苏州组织举办主题为“2023-半导体先进技术创新发展和机遇大会”。会议包括两个专题半导体制造与封装、化合物半导体先进技术及应用。分别以“CHIP China晶芯研讨会”和“化合物半导体先进技术及应用大会”两场论坛的形式同时进行。详情点击链接查看:https://w.lwc.cn/s/7jmaMn


声明:本网站部分文章转载自网络,转发仅为更大范围传播。 转载文章版权归原作者所有,如有异议,请联系我们修改或删除。

审核编辑黄宇

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 半导体
    +关注

    关注

    328

    文章

    24539

    浏览量

    202227
  • 激光
    +关注

    关注

    19

    文章

    2756

    浏览量

    63488
收藏 人收藏

    评论

    相关推荐

    综述:高性能锑化物中红外半导体激光器研究进展

    据麦姆斯咨询报道,近期,由中国科学院半导体研究所和中国科学院大学组成的科研团队受邀在《激光技术》期刊上发表了以“高性能锑化物中红外半导体激光器研究进展”为主题的文章。该文章第一作者为曹
    的头像 发表于 04-13 12:08 872次阅读
    综述:高性能锑化物中红外<b class='flag-5'>半导体</b>激光器<b class='flag-5'>研究进展</b>

    电压放大器在合成射流高效掺混机理研究的应用

     实验名称:功率放大器在合成射流高效掺混机理研究的应用   实验内容:合成射流是一种新型主动流动控制技术,其主要工作原理是利用振动薄膜或活塞周期性地吹/吸流体,在孔口外形成涡环,这些涡环在自诱导
    发表于 03-08 17:47

    伏户用如何做到低成本客?

    ,需要从市场需求、互联网平台、产品优势等多个方面综合考虑。通过综合运用这些策略和方法,伏企业可以在激烈的市场竞争脱颖而出,实现低成本客的目标。同时,随着鹧鸪云伏系统的不断推广和
    发表于 02-27 10:33

    半导体芯片结构分析

    后,这些芯片也将被同时加工出来。 材料介质层参见图3,芯片布图上的每一层图案用不同颜色标示。对应每一层的图案,制造过程会在晶圆制做出一层由半导体材料或介质构成的图形。本文把这些图形层称之为材料介质
    发表于 01-02 17:08

    中国科学院半导体研究所在反型结构钙钛矿太阳能电池取得重要进展

    近期,中国科学院半导体研究所游经碧研究员带领的团队在p-i-n反型结构钙钛矿太阳能电池的p型空穴传输层设计和可控生长等方面取得重要进展
    的头像 发表于 11-25 17:28 365次阅读
    中国科学院<b class='flag-5'>半导体</b><b class='flag-5'>研究所在</b>反型结构钙钛矿太阳能电池取得重要<b class='flag-5'>进展</b>

    半导体器件击穿机理分析及设计注意事项

    半导体器件击穿机理分析及设计注意事项
    的头像 发表于 11-23 17:38 643次阅读
    <b class='flag-5'>半导体</b>器件击穿<b class='flag-5'>机理</b>分析及设计注意事项

    半导体导体的导电机理有何不同

    半导体导体的导电机理有何不同 半导体导体是电子学中常见的两种材料,它们在电子传导方面有着不同的导电
    的头像 发表于 08-27 16:00 1520次阅读

    简述半导体的导电机理

    简述半导体的导电机理  半导体是一种非金属材料,具有介于导体和绝缘体之间的电导率。在半导体中,是否能导电的关键是它的能带结构。由于原子的能级
    的头像 发表于 08-27 15:49 4374次阅读

    有机半导体优缺点,有机半导体的导电机理

    有机半导体是具有半导体特性的有机材料。它们是有机化合物,导热率和电导率范围为10-10至100S。Cm-1,在导电金属和绝缘体之间。它主要是一类含有TT共轭结构的小有机分子和聚合物,有机半导体可分为三种类型:有机物,聚合物和供体
    的头像 发表于 06-30 14:54 4794次阅读
    有机<b class='flag-5'>半导体</b>优缺点,有机<b class='flag-5'>半导体</b>的导电<b class='flag-5'>机理</b>

    相变储热及卡诺电池研究进展

    来源 | 传热传质青委会 研究背景 随着双碳目标的全面推进,新型储能技术的规模化应用势在必行。其中,储热及热机械储能是大规模新型储能技术的重要组成部分。作为储热技术之一,相变储热因其储热密度较高
    的头像 发表于 06-27 11:23 921次阅读
    <b class='flag-5'>相变</b>储热及卡诺电池<b class='flag-5'>研究进展</b>

    半导体企业如何决胜2023秋招?

    ,是复旦大学微电子学院博士、复醒科技创始人&CEO、芯千同集成电路有限公司CEO、上海市新锐创业企业奖者、上海市互联网+大赛铜奖获得者。他致力于打造半导体行业产学融合数字化平台,平台
    发表于 06-01 14:52

    1.2 半导体材料的研究和应用(下)

    半导体
    jf_90840116
    发布于 :2023年05月08日 01:49:45

    1.1 半导体材料的研究和应用()_clip002

    半导体
    jf_90840116
    发布于 :2023年05月08日 01:47:53

    1.1 半导体材料的研究和应用()_clip001

    半导体
    jf_90840116
    发布于 :2023年05月08日 01:47:12

    1.1 半导体材料的研究和应用(

    半导体
    jf_90840116
    发布于 :2023年05月08日 01:46:30