0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

锂离子电池中SEI的形核生长机制研究

清新电源 来源:Battery Insider 2023-05-08 15:12 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

“近日,清华大学张强教授、中科院化学所文锐研究员和北京理工大学闫崇研究员在《JACS》期刊报道了锂离子电池中固体电解质界面(SEI)的形核生长模式的研究。本工作研究了两种典型的SEI:第一种是锂盐(如LiFSI)分解形成的无机SEI,其遵循混合2D/3D生长模式,形核过电势越大,2D的成分越高;另一种是有机成膜剂(如EC)分解形成的有机SEI,其严格遵循2DI的形核生长模式,能够有效地覆盖电极表面并成膜。根据这一原理,通过在电池化成初期施加大电流脉冲来诱导无机SEI的二维生长,从而提升了SEI的成膜均匀性和电池的性能。该基础研究为二次电池中快充、长循环、高容量电极SEI界面的精确调控提供了理论指导原则。”

第一部分:研究背景 固体电解质界面膜(SEI)是锂离子电池中“最重要也最神秘”的组分。因为它的存在,石墨负极可以在远超电解液电化学还原窗口的电位下稳定工作,从而提升电池的能量密度和循环寿命。SEI的厚度通常为5~50 nm。SEI虽然在电池中的含量极低,但是对提升电池的稳定性、功率性能和安全性起到了至关重要的作用。过去的四十年间,大量研究致力于揭示SEI的化学本质、结构以及离子传输机理。然而,还没有厘清SEI的初始形核和生长模式。事实上,SEI的初始形核和生长不但是理解SEI所有理化性质的前提,也决定了SEI的结构和形貌,从而决定了其对电极的粘附性和长循环中的稳定性。

传统的异相形核生长理论将形核分为瞬时(instantaneous,I)和连续(progressive,P)模式。前者表明形核位点在初始一瞬间即全部形成,后者表明形核位点在核的生长过程中持续形成。后续核的生长则可以按照维度分为二维(2D)和三维(3D)生长。如果能够将原位观测和经典形核理论有机结合,就有望从更微观尺度解析SEI的形核生长模式。

第二部分:研究内容:

二次电池中普遍存在异相形核和生长过程。例如,锂在集流体上的形核生长和Li2S在碳基底上的形核生长分别对应了锂硫电池充放电过程中的两个关键反应,其对锂硫电池的性能起到了决定性的作用。大量研究者对这两种形核过程的动力学和生长维度进行了定量研究。然而,定量研究SEI的形核和生长过程却遇到以下三方面的挑战:1. SEI形成过程所占容量极小,难以准确捕捉电化学信号。2. 实际电化学研究中SEI呈现的的电流-时间曲线都是单调递减的,所以无法套入基于恒压条件下的单峰电流-时间曲线所代表的经典形核模型。3. 原位尺度上难以直接观察SEI的形核和生长。

研究团队早期采用石墨作为工作电极,引入弱溶剂化电解液,探究了阴离子在石墨材料上的形核与生长机制,详细解读如下。 Angew. Chem.(VIP论文):锂电池中SEI的渐进形核和二维生长机制 因石墨的比表面积较小,在研究有机诱导界面的形核与生长时存在一定困难。为了克服上述难题,本工作采用了大比表面积乙炔黑(carbon black,CB)负极“放大”SEI形成反应、弱溶剂化电解液(weakly solvating electrolyte,WSE)诱导单峰电流-时间曲线、高分辨原位电化学原子力显微镜(electrochemical atomic force microscopy,EC-AFM)技术原位观测SEI形核过程,解决了以上三个方面的难题,成功解析了无机和有机成膜剂诱导的SEI形核和生长过程。

0e1d0558-ed5e-11ed-90ce-dac502259ad0.png

图1. SEI在CB电极上生长的电化学曲线。(a)Li | CB电池的首圈放电曲线。(b)WSE电解液的恒压电流-时间曲线。(c)WSE+0.2 EC电解液的恒压电流-时间曲线。(d)WSE+0.5 EC电解液的恒压电流-时间曲线。

恒流放电条件下,WSE体系中都会呈现一个形核过电位,预示着发生了SEI形核过程。这一形核过电位的存在和恒压计时电流曲线中的单峰是一一对应的。由于ECDMC中没有出现这一形核过电位,所以其恒压计时电流曲线是单调递减的,无法采用经典模型描述。

0e3c430a-ed5e-11ed-90ce-dac502259ad0.png

图2. 原位EC-AFM观测WSE中LiFSI诱导的无机SEI在HOPG电极上的形核生长过程。(a)不同电位下无量纲时间-电流曲线及其与传统形核模式(3DI,3DP,2DI,2DP)的对比。原位AFM观测HOPG电极在(b)OCP,(c–e)1.00 V下的图片。(f)e的3D AFM图片。(b–d)中标尺为400 nm,(e)中为600 nm。

WSE中无机SEI的形成主要依靠LiFSI的分解,且属于2DI/3DP混合形核生长模式。LiFSI诱导的SEI具有纳米颗粒的形状,其首先在HOPG的端面聚集,随后逐渐连结成项链状,覆盖端平面。形核的过电位越大,形核过程越接近2DI。

0e558d4c-ed5e-11ed-90ce-dac502259ad0.png

图3. 原位EC-AFM观测WSE+ 0.2EC中的EC诱导的有机SEI在HOPG电极上的形核生长过程。(a–b)WSE+0.2 EC和WSE+0.5 EC在不同电位下无量纲时间-电流曲线及其与传统形核模式(3DI,3DP,2DI,2DP)的对比。原位AFM观测HOPG电极在(c)OCP,(d)1.11–0.82 V,(e–g)0.50 V下的图片。(h)d–g中沿所示虚线的高度剖面信息。(i)g的3D AFM图片。图中所有标尺均为400 nm。

WSE+0.2 EC中有机SEI的形成主要依靠EC的分解,属于2DI形核生长模式。EC诱导的SEI成膜状,首先在HOPG的端面聚集,随后向HOPG的基平面二维延伸,厚度不变,逐渐覆盖整个HOPG表面。

0e5fe42c-ed5e-11ed-90ce-dac502259ad0.png

图4. HOPG电极上SEI形成的示意图。(a)原始的HOPG电极。(b–c)LiFSI诱导的无机SEI颗粒形核和后续生长过程。(d–e)EC诱导的有机SEI薄膜形核和后续生长过程。

0e6bbb6c-ed5e-11ed-90ce-dac502259ad0.png

图5. 通过调控SEI的形核和生长模式改善LFP |石墨电池性能。(a)LFP |石墨电池的容量和库伦效率在1.0 C循环过程中的变化。(b)LFP |石墨电池在第50圈(实线)和第300圈(虚线)时的电压曲线。在每圈充电前,WSE+pulse电池会以一个4.0 C的脉冲电流充至3.3 V并恒压直至电流小于0.1 C。随后按照正常充放电协议进行循环。

由上述结果可知,WSE+0.2 EC中EC的2DI成膜质量远高于LiFSI纳米颗粒的混合2D/3D成核模式,因此所得的SEI能更好地保护电极,呈现出更加优异的电化学性能。然而,通过在SEI形成初期采用大电流脉冲制造大过电位,能够诱导LiFSI分解并以二维的方式成膜,所得SEI更均匀、成膜质量更好。因此,WSE+pulse电池的容量保持率能够提升至和WSE+0.2 EC相当。

第三部分:结论

本工作基于计时电流法和原位电化学AFM观测,定量解析了两种典型SEI(无机和有机)的形核和生长过程。锂盐(如LiFSI)分解形成的无机SEI遵循混合2D/3D生长模式,其形核过电势越大,2D的成分越高;有机成膜剂(如EC)分解形成的有机SEI严格遵循2DI的形核生长模式,能够有效地覆盖电极表面并成膜。根据该原理,提出了通过在电池化成初期施加大电流脉冲来诱导无机SEI二维生长的可行性,从而提升了SEI的成膜均匀性和电池性能。本工作以一个全新的视角探讨了SEI的形核和生长过程,揭示了该过程中又一深层次的细节,为后续精准调控电化学装置中的快充、长循环及高稳定界面开辟了新的思路。





审核编辑:刘清

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 锂离子电池
    +关注

    关注

    85

    文章

    3529

    浏览量

    80211
  • 电解液
    +关注

    关注

    10

    文章

    874

    浏览量

    23714
  • AFM
    AFM
    +关注

    关注

    0

    文章

    61

    浏览量

    20727

原文标题:清华&化学所&北理工JACS:锂离子电池中SEI的形核生长机制研究

文章出处:【微信号:清新电源,微信公众号:清新电源】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    一文看懂锂离子电池的基础知识

    在新能源产业快速发展与全球能源转型的大背景下,锂离子电池已成为支撑新能源汽车、电化学储能及消费电子等领域发展的核心能量存储器件。锂电池技术体系涵盖核心结构、性能差异机制与精密制造流程,是行业
    的头像 发表于 09-04 18:02 744次阅读
    一文看懂<b class='flag-5'>锂离子电池</b>的基础知识

    锂离子电池的原理与材料全解析

    锂离子电池作为现代储能领域的核心技术,其高效稳定的能量转换能力支撑着新能源产业的快速发展。美能锂电作为行业创新企业,长期致力于锂离子电池材料研发与工艺优化,其技术突破为动力电池领域的革新提供了重要
    的头像 发表于 08-14 18:02 2295次阅读
    <b class='flag-5'>锂离子电池</b>的原理与材料全解析

    锂离子电池集流体—铜箔的表面粗糙度表征研究

    集流体在锂离子电池中扮演着不可或缺的角色,其材质、物理性质、表面处理、稳定性等方面都会对电池的性能产生影响。通过对集流体表面进行粗糙化处理,如退火,可以帮助阳极电流集流体形成扁平的石墨电极片和均匀
    的头像 发表于 08-05 17:56 494次阅读
    <b class='flag-5'>锂离子电池</b>集流体—铜箔的表面粗糙度表征<b class='flag-5'>研究</b>

    锂离子电池隔膜质量检测与缺陷分析

    全球对可再生能源需求增长,锂离子电池作为关键能源存储技术,其性能和安全性至关重要。隔膜是锂离子电池的核心,其质量影响电池性能。在电池的生产、运输和使用中,隔膜可能出现破膜、刮伤、漏涂、
    的头像 发表于 08-05 17:55 804次阅读
    <b class='flag-5'>锂离子电池</b>隔膜质量检测与缺陷分析

    锂离子电池涂布工艺:技术要求与方法选择

    锂离子电池制造领域,涂布工艺是决定电池性能和质量的关键步骤之一。涂布工艺的精确度直接影响到电池的容量、循环寿命以及安全性。随着锂离子电池技术的不断进步,对涂布工艺的要求也日益严格。本
    的头像 发表于 08-05 17:55 729次阅读
    <b class='flag-5'>锂离子电池</b>涂布工艺:技术要求与方法选择

    锂离子电池创:性能、分类与GPE的应用前景

    。在这些电池中,电解质扮演着至关重要的角色。本文,美能光子湾将带您深入探讨电解质的分类、特性以及凝胶聚合物电解质(GPE)在现代锂离子电池中的应用。Part.01电
    的头像 发表于 08-05 17:54 928次阅读
    <b class='flag-5'>锂离子电池</b>创:性能、分类与GPE的应用前景

    锂离子电池焊接工艺的分析解构

    作为现代社会的“能源心脏”锂离子电池的应用涉及相当广泛。锂离子电池的的制作工艺之中,焊接技术是连接其内部组件、确保电池高效运作的的重要环节,直接决定了电池安全性、
    的头像 发表于 08-05 17:49 1592次阅读
    <b class='flag-5'>锂离子电池</b>焊接工艺的分析解构

    锂离子电池电解液浸润机制解析:从孔隙截留到工艺优化

    锂离子电池制造领域,美能光子湾始终怀揣着推动清洁能源时代加速到来的宏伟愿景,全力助力锂离子电池技术的革新。在锂离子电池制造过程中,电解液浸润是决定电池性能、循环寿命和安全性的关键步骤
    的头像 发表于 08-05 17:49 1828次阅读
    <b class='flag-5'>锂离子电池</b>电解液浸润<b class='flag-5'>机制</b>解析:从孔隙截留到工艺优化

    锂离子电池多孔电极的电化学性能研究

    高端光学精密测量技术,深耕锂电、半导体等领域的材料性能评估,本文光子湾将聚焦锂离子电池多孔电极的电化学性能机制,解析结构参数与性能的关联规律,为高性能电极设计提供
    的头像 发表于 08-05 17:47 847次阅读
    <b class='flag-5'>锂离子电池</b>多孔电极的电化学性能<b class='flag-5'>研究</b>

    车用锂离子电池机理建模与并联模组不一致性研究

    车用锂离子电池机理建模与并联模组不一致性研究
    发表于 05-16 21:02

    FIB-SEM技术在锂离子电池的应用

    锂离子电池材料的构成锂离子电池作为现代能源存储领域的重要组成部分,其性能的提升依赖于对电池材料的深入研究锂离子电池通常由正极、负极、电解质
    的头像 发表于 02-08 12:15 1022次阅读
    FIB-SEM技术在<b class='flag-5'>锂离子电池</b>的应用

    快速充电电池中锂沉积、SEI生长与电解液分解的耦合机制定量分析

    研究背景 随着电动汽车(EV)市场的快速发展,消费者对电池充电时间的要求越来越高,尤其是快速充电技术的需求日益迫切。然而,锂离子电池(LIBs)在快速充电条件下的性能退化问题严重限制了其应用。快速
    的头像 发表于 01-15 10:53 2142次阅读
    快速充电<b class='flag-5'>电池中</b>锂沉积、<b class='flag-5'>SEI</b>膜<b class='flag-5'>生长</b>与电解液分解的耦合<b class='flag-5'>机制</b>定量分析

    锂离子电池的正极为什么用铝箔负极用铜箔?

    随着锂离子电池应用越来越广泛,很多人对锂离子电池也越来越感兴趣,那么为什么在锂离子电池中正极要使用铝箔而负极要使用铜箔呢?其实关于这一问题主要有以下几方面的考量。 1-导电性和成本 在所有金属中
    的头像 发表于 12-17 10:10 5591次阅读
    <b class='flag-5'>锂离子电池</b>的正极为什么用铝箔负极用铜箔?

    快充过程析锂、SEI生长和电解液分解耦合机制的定量分析

    机制进行了细致深入的分析。研究结果揭示,锂沉积、固体电解质界面(SEI)的生长以及电解液的分解这三个关键过程存在着紧密的耦合作用,共同加剧了快速充电的条件下的
    的头像 发表于 12-10 09:15 2721次阅读
    快充过程析锂、<b class='flag-5'>SEI</b><b class='flag-5'>生长</b>和电解液分解耦合<b class='flag-5'>机制</b>的定量分析

    智能化进程中的锂离子电池

    。1992年,锂离子电池实现商品化。   锂离子电池 锂离子电池是一种充电电池,它主要依靠锂离子在正极和负极之间移动来工作。在充放电过程中,
    的头像 发表于 12-06 10:45 1468次阅读