0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

锂金属电池室温固态聚合物电解质的锂离子传导机制

锂电联盟会长 来源:能源学人 2023-04-15 15:08 次阅读

通讯作者:张联齐/宋大卫/马月

第一作者:王苏

通讯单位:天津理工大学

【工作简介】

本文开发了一种异质双层固态聚合物电解质(DSPE),并阐明其在室温下的工作机理。通过分子动力学(MD)模拟提出了丁二腈(SN)与锂盐之间的分子间相互作用形成的[SN···Li+]溶剂化结构。密度泛函理论(DFT)联合系统的傅里叶变换红外光谱(FTIR)和核磁共振(NMR)进一步证明SN与聚合物之间的强相互作用,结合[SN···Li+]溶剂化鞘结构,聚合物···[SN···Li+]体系形成并构建了快速的锂离子传输通道,为锂离子在室温下通过聚合物链段传输提供动力。该电解质匹配高电压LiNi0.6Mn0.2Co0.2O2正极表现出优异的长循环性能,同时与锂负极的界面稳定,Li/Li对称电池室温下极化1000小时后呈现极小的过电位。此外,得益于SN的不可燃性,DSPE表现出前所未有的安全性能,这为开发高性能固态聚合物电解质提供了新思路。相关研究成果以“Li-ion transfer mechanism of ambient-temperature solid polymer electrolyte towards lithium metal battery”为题发表在国际期刊Advanced Energy Materials上。

【主要内容】

020e5cf6-c862-11ed-bfe3-dac502259ad0.png

图1. (a) 通过MD模拟得到的SN和Li+的快照;(b) 锂盐与SN的径向分布函数(g(r),实线)和配位数(n(r),虚线)计算;(c) SN、PEO、PEO-SN和(d) SN、PPC、PPC-SN的优化几何构型和静电势;(e) PEO-SN和PPC-SN的结合能。

本文开发了一种异质双层固态聚合物电解质(DSPE),以探究固态聚合物电解质在室温下的工作机理。鉴于LiTFSI的高导电性但对正极铝集流体的腐蚀作用以及LiDFOB的优异正极兼容性。在制备的DSPE时,SN-PPC-LiDFOB(DSPE-Ⅰ)与正极接触,PEO-Li7La3Zr2O12-LiTFSI复合电解质(DSPE-Ⅱ)靠近锂负极一侧。根据分子动力学模拟计算,SN和锂盐(LiDFOB)之间的分子间相互作用在室温下形成[SN···Li+]的特定溶剂化鞘结构。根据计算的径向分布函数表明Li+与SN的作用主要发生在SN的N原子上。为了定量获得SN和Li+的配位作用,进一步进行DFT计算,结果表明SN与Li+优先配位,这有利于锂盐的解离和室温下更多Li+的快速释放。静电势(ESP)结果显示出PPC比PEO更高的电负性,意味着PPC和SN之间的配位比PEO更强。与此同时,PPC···SN的结合能高于PEO···SN,可以保护锂负极免受SN的侵蚀。这些结果表明,聚合物···[SN···Li+]体系形成,并为锂离子通过聚合物链转移提供了潜力,建立了室温下连续的Li+迁移路径。

022cb9a8-c862-11ed-bfe3-dac502259ad0.png

图2. (a) SN、LiDFOB、SN-LiDFOB;(b) PPC、SN-LiDFOB、PPC-SN-LiDFOB;(c) PEO、SN-LiDFOB、PEO-SN-LiDFOB的FTIR光谱和细节放大图。

0238e688-c862-11ed-bfe3-dac502259ad0.png

图3. SN和SN-LiDFOB的(a)13C NMR和(b)1H NMR光谱;PPC和PPC-SN-LiDFOB的(c)13C NMR和(d) 1H NMR 光谱;PEO和PEO-SN-LiDFOB的(e)13C NMR和(f)1H NMR光谱;(g) DSPE-I、(h) DSPE-II和(i) DSPE的Nyquist曲线。

通过FTIR和NMR系统地研究了PPC/PEO聚合物基体与溶剂化SN-LiDFOB配合物之间的相互作用。阐明了[SN···Li+]溶剂化结构与PPC/PEO的C=O基团/C-C链之间存在强烈的相互作用,进一步印证Li+通过PPC/PEO链段快速转移。

0243256c-c862-11ed-bfe3-dac502259ad0.png

图4. 室温下DSPE-Ⅰ、DSPE-Ⅱ和DSPE的结构示意图。

固态聚合物电解质在室温下的工作机制如图4所示,在DSPE-Ⅰ层中形成[SN···Li+]溶剂化结构并与PPC相互作用,形成了聚合物···[SN···Li+]体系,为锂离子沿聚合物链转移提供了潜力。然而,锂负极很容易受SN组分的影响而导致严重的腐蚀反应和锂枝晶的不可控生长。对于DSPE-Ⅱ,PEO的高结晶度和缓慢的聚合物链段运动阻碍了锂离子在室温下的传输。在构建双层DSPE后,PEO···[SN···Li+]的相互作用极大地优化了锂离子迁移路径,提高了室温运行能力。

025e5832-c862-11ed-bfe3-dac502259ad0.png

图5. (a) DSPE的电子电导率;(b) 25至115℃的SS/DSPE/SS对称电池温度依赖性曲线;(c) 25℃时DSPE的LSV曲线;(d) Li/DSPE/Li对称电池的迁移数;(e) Li/DSPE/Li对称电池在不同老化时间下的Nyquist曲线;(f) Li/DSPE/Li对称电池的临界电流密度;(g) Li/DSPE/Li对称电池不同电流密度下的极化曲线。

基于聚合物基体和SN溶剂化结构之间的综合相互作用,DSPE表现出优异的电化学性能。PPC···[SN···Li+]和PEO···[SN···Li+]的相互作用引入了连续的Li+传输路径,从而获得了高的锂离子迁移数。Li/Li恒电流极化测试了DSPE和锂负极之间的动态电化学稳定性和界面稳定性,表现为充放电循环1000小时后保持55 mV的低过电压和超越报道值的临界电流密度(>1.3 mA cm−2),印证了锂离子传输路径的连续性和与锂负极的良好界面兼容性。

0293fad2-c862-11ed-bfe3-dac502259ad0.png

图6. LFP/DSPE/Li电池的 (a) 循环性能,(b) 不同循环后的充/放电曲线,以及(c)倍率性能。NCM622/DSPE/Li电池的(d) 倍率性能和(e) 循环性能。LFP/DSPE/石墨软包电池的(f) 电压测试和在(g) 弯折、(h) 锤击和(i) 剪切下的LED供电测试。

组装LFP/Li和NCM622/Li固态锂金属电池评估DSPE的电化学性能。LFP/Li电池在室温下200次循环后容量保持率为96%。匹配高电压NCM622正极具有188.6 mA h g−1的高的放电比容量。组装LFP/DSPE/石墨软包电池对灵活性和安全性进行评估,结果表明DSPE具有超高的安全性,有望在未来广泛应用于环境温度可穿戴电子设备。

凭借系统的理论证明和优异的电化学性能,这项工作将丰富对固态聚合物电解质在室温下离子传输机制的基本理解。更重要的是,将促进具有室温可操作性和高安全性的固态聚合物电解质的设计。







审核编辑:刘清

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 锂离子
    +关注

    关注

    5

    文章

    521

    浏览量

    37105
  • 电解质
    +关注

    关注

    6

    文章

    754

    浏览量

    19681
  • DFT
    DFT
    +关注

    关注

    2

    文章

    219

    浏览量

    22469
  • NMR
    NMR
    +关注

    关注

    0

    文章

    10

    浏览量

    6908
  • 锂金属电池
    +关注

    关注

    0

    文章

    126

    浏览量

    4189

原文标题:锂金属电池室温固态聚合物电解质的锂离子传导机制

文章出处:【微信号:Recycle-Li-Battery,微信公众号:锂电联盟会长】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    请问聚合物电解质是如何进行离子传导的呢?

    在目前的聚合物电解质体系中,高分子聚合物室温下都有明显的结晶性,这也是室温固态
    的头像 发表于 03-15 14:11 162次阅读
    请问<b class='flag-5'>聚合物</b><b class='flag-5'>电解质</b>是如何进行<b class='flag-5'>离子</b><b class='flag-5'>传导</b>的呢?

    聚合物电池是什么 锂离子电池聚合物电池的区别

    聚合物电池是什么 锂离子电池聚合物电池的区别  聚合物
    的头像 发表于 03-07 16:54 321次阅读

    不同类型的电池电解质都是什么?

    聚合物,如固态电池固态陶瓷和熔融盐(如钠硫电池)中使用的聚合物。 铅酸
    的头像 发表于 02-27 17:42 350次阅读

    锂离子电池和锂聚合物电池的区别在哪

    锂离子电池和锂聚合物电池是两种常见的充电式电池,它们在构造、工作原理等方面存在一些显著的区别。本文将介绍这两种电池的特点、应用以及优缺点。 一、构造与原理
    的头像 发表于 01-22 17:20 999次阅读

    锂离子电池电解液有什么作用?

    ,功率密度,宽温度应用,循环寿命和安全性能方面确实起着至关重要的作用。 电解质是锂电池的四种关键材料之一:正极,负极,隔膜和电解质,它被称为锂离子电池的“血液”,在
    的头像 发表于 12-26 17:05 275次阅读

    固态金属电池内部固化技术综述

    高能量密度锂金属电池是下一代电池系统的首选,用聚合物固态电解质取代易燃液态
    的头像 发表于 12-24 09:19 1773次阅读
    <b class='flag-5'>固态</b>锂<b class='flag-5'>金属</b><b class='flag-5'>电池</b>内部固化技术综述

    锂离子电池电解液的概念、组成及作用

    从儿童玩具到无绳电动工具,再到电动汽车,由锂离子电池供电的产品,包括 三元锂电池 ,在我们的日常生活中正变得越来越普遍。电池电解液被认为是最重要的组成部分之一。根据
    的头像 发表于 11-10 10:00 2135次阅读

    PL5353A SOT23-5 单电池锂离子/聚合物电池保护集成电路

    一般说明 PL5353A产品是离子/聚合物电池保护的高集成解决方案。 PL5353A包含先进的功率MOSFET,高精度电压检测电路和延迟电路。 PL5353A被放入超小型SOT23
    发表于 11-07 10:23

    室温下实现全固态锂离子电池的性能分析

    论文讨论了如何通过调整聚合物侧链的分子链运动和锂离子的解离来增加alter-SIPEs中的离子传导性。作者合成了五种不同的alter-SIPEs(P1-P5),它们由相同的乙烯醚构成,
    发表于 10-24 10:16 260次阅读
    <b class='flag-5'>室温</b>下实现全<b class='flag-5'>固态</b><b class='flag-5'>锂离子电池</b>的性能分析

    固态离子电池固态锂离子电池对比

    近期,固态离子电池频频“出圈”。9月22日,广州昊威新能源30GWh固态方形钠离子电池项目签约
    的头像 发表于 10-21 17:05 1571次阅读
    <b class='flag-5'>固态</b>钠<b class='flag-5'>离子</b><b class='flag-5'>电池</b>与<b class='flag-5'>固态</b><b class='flag-5'>锂离子电池</b>对比

    金属电池正负离子协同调节功能的两性离子聚合物电解质的原位构建

    聚合物的两性离子段通常是刚性的,导致所有聚合物两性离子电解质通常太硬而无法与电极充分接触,这可能导致高界面电阻和设备的短寿命。
    发表于 10-17 15:48 361次阅读
    锂<b class='flag-5'>金属</b><b class='flag-5'>电池</b>正负<b class='flag-5'>离子</b>协同调节功能的两性<b class='flag-5'>离子</b><b class='flag-5'>聚合物</b><b class='flag-5'>电解质</b>的原位构建

    固态电池原位聚合方法的研究进展

    液态电解质的泄漏和易燃易爆等安全问题影响着锂电池的应用场景。引入固态电解质聚合物电解质可以改善
    发表于 09-19 11:35 1469次阅读
    <b class='flag-5'>固态</b>锂<b class='flag-5'>电池</b>原位<b class='flag-5'>聚合</b>方法的研究进展

    LATP和TiO2在固态电池中的作用机制

    陶瓷颗粒分散在聚合物基体中的复合固态电解质(CSE)可以将全固态电池(ASSB)的前景转化为实际应用。
    的头像 发表于 09-13 09:29 2262次阅读
    LATP和TiO2在<b class='flag-5'>固态</b><b class='flag-5'>电池</b>中的作用<b class='flag-5'>机制</b>!

    LT3650单片式单节锂离子聚合物电池充电器电路

    使用LT3650单片式单节锂离子聚合物电池充电器可以设计出使用很少电子部件的简单充电器。 LT3650 提供了一种恒定电流恒定电压充电特性和最大充电电流(可从外部设置高达 2A) 的电流
    发表于 09-11 17:32

    用于钠金属电池的NASICON固态电解质的超快合成

    NASICON结构固态电解质(SSEs)作为一种非常有前途的钠固态金属电池(NaSMB)材料,由于其在潮湿环境中具有优异的稳定性、高
    发表于 08-23 09:43 1173次阅读
    用于钠<b class='flag-5'>金属</b><b class='flag-5'>电池</b>的NASICON<b class='flag-5'>固态</b><b class='flag-5'>电解质</b>的超快合成