0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

上海电力大学《AFM》:一种新型复合固态电解质设计!

鸿之微 来源:鸿之微 2023-02-06 16:35 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

· ·

全固态锂电池被认为是未来储能器件的发展方向,但电解质的使用一直限制着全固态锂电池的应用。超离子导体是理想的固态电解质,因为它们的离子电导率约为1 mS cm-1,与液体电解质相当,但没有泄漏和挥发的风险,从而提高了电池的安全性。这种优异的离子转移能力可以促进Li+的均匀沉积,从而抑制锂枝晶的生长,提高电池的循环寿命。目前几种超离子导体(如硫醚和氧化物)制备成本高、制备复杂,并且存在界面电阻高、电化学稳定性差和韧性差等局限性。复合电解质含有有机和无机物质,使电解质具有高离子电导率,同时保持良好的柔韧性和低界面电阻。然而,与快速离子导体和液体电解质相比,它们的离子电导率仍然太低

来自上海电力大学的学者制备了一种新的复合电解质,其中制备了有机聚环氧乙烷(PEO)和无机三氧化钼(MoO3)纳米带的交替层,然后将多层膜卷成片状。与通过无序共混制备的类似电解质相比,这里的电解质具有垂直于电极方向的介观连续有机-无机界面。离子电导率从4.88×10-4增加到1.16×10−3S cm−1。“界面电池”可以在2 C(60℃)下稳定运行超过>2000次充放电循环,即使在10 C下也能快速充放电。理论计算结果表明,这种独特的组装方法从根本上消除了PEO和MoO3界面之间的能带隙,促进了锂离子(Li+)的传输。此外,Mo和PEO轨道之间的电子相互作用扩展了PEO的晶格结构,导致结晶度降低,从而进一步提高了电池性能。本研究提供了一种不同于共混的复合电解质设计,代表了低成本超离子导体开发的新策略。相关文章以“Directed and Continuous Interfacial Channels for Optimized Ion Transport in Solid-State Electrolytes”标题发表在Advanced Functional Materials。

论文链接: https://doi.org/10.1002/adfm.202206976

09e6bf38-a4cf-11ed-bfe3-dac502259ad0.png

0a077606-a4cf-11ed-bfe3-dac502259ad0.png

图1.MoO3纳米带的形貌和结构表征。a) 分散的MoO3纳米带的SEM图像。b) 自组装的 MoO3薄膜的 SEM 图像。c)HRTEM显微照片,d)SAED图案和e)MoO3纳米带的STEM图像。f,g) MoO3纳米带中Mo和O的元素图。

0a55e12e-a4cf-11ed-bfe3-dac502259ad0.png

图2.PEO/LiTFSI/3DMoO3电解质的形态学表征。a) 具有交替有机和无机层的制备薄膜示意图。b) 使用 PL3DM 组装的电池示意图。c) PL3DM的照片。d) 偏振光显微镜图像和 e)PL3DM 表面的 SEM 图像。PL3DM的横截面SEM图像f)和g)有机-无机界面基团的放大视图。h) 有机-无机界面组的EDS线扫描。

0af15820-a4cf-11ed-bfe3-dac502259ad0.png

图3.PEO/LiTFSI/3DMoO3、PEO/LiTFSI/MoO3和PEO/LiTFSI电解质的电化学性能。a) PL3DM 从 25 到 80 ℃的交流阻抗谱。b) 离子电导率图和 c) PL3DM、PLM 和 PL 的DSC热分析图。d) PL3DM、PLM、PL、PEO 和 LiTFSI 的 XRD 图谱。e) Li|PL3DM |的CV曲线LiFePO4和 f) Li|PLM|LiFePO4在 0.1 mV s−1下60 ℃. g) PL3DM、PLM 和 PL 在 0.1 mV s−1下60℃下的 LSV 曲线。

0ca639ce-a4cf-11ed-bfe3-dac502259ad0.png

图4.使用PEO/LiTFSI/3DMoO3、PEO/LiTFSI/MoO3和PEO/LiTFSI电解质的锂对称电池的循环性能。a)Li | PL3DM | Li、Li|PLM|Li和Li|PL|Li在0.2mA cm-2和0.2 mAh cm-2、60℃下的恒电流循环性能。插图显示了电池在900-1000h循环周期内的电压-时间曲线。b)Li | PL3DM | Li、Li|PLM|Li和Li|PL|Li的速率性能。c,d) Li|PL3DM|Li,e,f) Li|PLM|Li和g,h) Li|PL|Li的Li金属负极在大约200小时循环后的表面形态的SEM图像和相应的放大图像。

0d47ff0c-a4cf-11ed-bfe3-dac502259ad0.png

图5.使用PEO / LiTFSI / 3DMoO3,PEO / LiTFSI / MoO3和PEO / LiTFSI电解质的全电池的循环性能。a) Li|LiFePO4电池在0.5 C和60℃下。b)Li|LiFePO4在60℃下的倍率能力。c)Li|LiFePO4电池在2 C和60℃下的长期循环性能。d)PL3DM,e)PLM和f)PL不同循环后的电池的EIS图。

0da98a7e-a4cf-11ed-bfe3-dac502259ad0.png

图6.表征 PEO/LiTFSI/3DMoO3电解质在循环过程中的化学变化。a) 用于表征固体电解质的原位拉曼测试装置示意图。b)Li|PL3DM PCE内有机-无机界面处的原位拉曼光谱。c)Li|PL|LiFePO4电池内部电解质在50-1000cm-1的原位拉曼光谱。d) XRD 图谱,e) FT-IR 光谱,以及 f)PL3DM 经过不同循环后的拉曼光谱。

0e1b3818-a4cf-11ed-bfe3-dac502259ad0.png

图7.PEO和MoO3中电子轨道的计算模拟结果.a) 吸附在 MoO3(010) 表面上的 PEO 的 DOS。b) 吸附在MoO3上的PEO的PDOS (010)。 在这项研究中,使用水热法制备了细长的MoO3纳米带。通过逐层浇铸、轧制和切片制备了介观尺度上有机-无机界面垂直于电极方向排列的PL3DM。与通过简单共混方法制备的PLM相比,PL3DM中定向界面的存在显著提高了电解质的离子电导率、离子迁移率和耐高压性。在定向的有机-无机界面上,Li+离子浓度增加,PEO的结晶度降低,导致离子电导率增加,复合电解质中的离子传导路径缩短。PDOS和DFT计算结果表明,界面上有机和无机组分的电子轨道之间的耦合可以形成离子通道,有效降低了Li+传输的能垒。新型PL3DM的离子电导率在60℃时高达1.16×103S cm-1,这种出色的离子传输能力使使用PL3DM组装的“界面电池”能够实现令人满意的循环性能。Li|PL3DM|LiFePO4在2 C下稳定循环超过2000次。此外,ASSLB可以快速充放电,并在10C的高速率下工作。本工作制备的介观尺度的“界面电池”为制备低成本、高离子电导率的固态电池提供了新的思路。(文:SSC)

审核编辑 :李倩

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 电解质
    +关注

    关注

    6

    文章

    827

    浏览量

    21233
  • 晶格
    +关注

    关注

    0

    文章

    96

    浏览量

    9595

原文标题:文章转载丨上海电力大学《AFM》:一种新型复合固态电解质设计!

文章出处:【微信号:hzwtech,微信公众号:鸿之微】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    MLPC的抗振性能如何与液态电解质电容比拟

    MLPC(固态叠层高分子电容)的抗振性能显著优于液态电解质电容 ,其核心优势体现在结构稳定性、材料特性及实际应用表现三方面,具体分析如下: 、结构稳定性:无液态泄漏风险,振动下结构完整 固态
    的头像 发表于 11-22 10:49 574次阅读
    MLPC的抗振性能如何与液态<b class='flag-5'>电解质</b>电容比拟

    巴西研究团队推进钠离子电池电解质计算研究

    浓度的影响。”研究团队通过分子动力学模拟,利用圣保罗大学及德国波恩大学等机构的计算资源,解析离子在电解质中的相互作用机制。
    的头像 发表于 11-12 16:19 99次阅读
    巴西研究团队推进钠离子电池<b class='flag-5'>电解质</b>计算研究

    固态电容和电解电容的优劣势对比,怎么选?

    固态电容和电解电容(通常指液态电解电容)的主要区别在于 介电材料(电解质)的不同 ,这导致了它们在性能、寿命、应用和价格上的系列差异。
    的头像 发表于 10-24 18:15 1381次阅读

    突破性固态聚合物电解质:像拼图样组装分子,打造安全高压锂电池

    密度的进步提升。固态聚合物电解质因其不易泄漏、柔性好、重量轻和易于加工等优势,被视为解决上述问题的理想方案之。然而,常见的聚合物电解质
    的头像 发表于 09-30 18:04 2635次阅读
    突破性<b class='flag-5'>固态</b>聚合物<b class='flag-5'>电解质</b>:像拼图<b class='flag-5'>一</b>样组装分子,打造安全高压锂电池

    破解固态锂电池界面困局:聚合物从复合电解质、粘结剂到保护层的三大核心作用解析

    面临个核心挑战:固体界面问题。电极与固态电解质之间的固-固接触导致界面阻抗高、接触稳定性差,以及严重的界面副反应。本文系统阐述了聚合物材料在解决这些界面难题中的关
    的头像 发表于 09-18 18:02 988次阅读
    破解<b class='flag-5'>固态</b>锂电池界面困局:聚合物从<b class='flag-5'>复合</b><b class='flag-5'>电解质</b>、粘结剂到保护层的三大核心作用解析

    液态电解电容与固态电解电容材质的差别

    液态电解电容与固态电解电容在材质上的核心差别在于 介电材料 和 阴极材料 ,这差异直接决定了两者在性能、应用场景及可靠性上的显著不同,具体如下: 1. 介电材料:氧化铝层相同,但
    的头像 发表于 08-13 16:35 902次阅读
    液态<b class='flag-5'>电解</b>电容与<b class='flag-5'>固态</b><b class='flag-5'>电解</b>电容材质的差别

    锂离子电池电解质填充工艺:技术原理与创新实践

    在锂离子电池的全生命周期中,电解质填充工艺的技术精度直接关联电池的能量密度、循环稳定性与安全性。美能锂电作为新能源制造领域的创新引领者,始终以精密工艺为基石,在电解质填充技术的研发与应用中实现了从
    的头像 发表于 08-11 14:53 630次阅读
    锂离子电池<b class='flag-5'>电解质</b>填充工艺:技术原理与创新实践

    超声波焊接有利于解决固态电池的枝晶问题

    电池(SSLMBs)作为一种极具潜力的储能技术,由于其固有的高安全性和实现高能量密度的潜力备受关注。然而,其实际应用受制于严峻的界面问题,主要表现为固态电解质与锂金属之间润湿性差、电(化学)不稳定性
    发表于 02-15 15:08

    清华大学:自由空间对硫化物固态电解质表面及内部裂纹处锂沉积行为的影响

    全性的全固态锂金属电池的最具潜力的候选电解质材料之。 尽管如此,仍有大量研究表明,即使在较低的电流密度下(0.5-1 mA/cm2),全固态金属锂电池中锂枝晶穿透硫化物
    的头像 发表于 02-14 14:49 733次阅读
    清华<b class='flag-5'>大学</b>:自由空间对硫化物<b class='flag-5'>固态</b><b class='flag-5'>电解质</b>表面及内部裂纹处锂沉积行为的影响

    清华深研院刘思捷/港科大Kristiaan Neyts最新AEM封面文章:硫化物复合固态电解质

    复合固态电解质及其全固态锂离子电池的应用,并被评选为正封面(front cover)文章。     本文综述了硫化物与聚合物复合
    的头像 发表于 01-07 09:15 964次阅读
    清华深研院刘思捷/港科大Kristiaan Neyts最新AEM封面文章:硫化物<b class='flag-5'>复合</b><b class='flag-5'>固态</b><b class='flag-5'>电解质</b>

    陈军院士团队最新Angew,聚合物电解质新突破

    研究背景 固态锂金属电池(SSLMBs)因其高的能量密度和优异的安全性能在能源存储领域受到广泛关注。然而,现有固态电解质(SSEs)普遍存在离子传导性差、电极界面稳定性不足等问题,极大地限制了其实
    的头像 发表于 01-06 09:45 2098次阅读
    陈军院士团队最新Angew,聚合物<b class='flag-5'>电解质</b>新突破

    镁合金牺牲阳极与电解质接触不良的原因

    、埋设深度不足 镁阳极的埋设深度决定了其与周围电解质的接触面积和接触质量。如果埋设深度不足,阳极可能与电解质的接触不良,导致保护电流分布不均,影响保护效果。特别是在地下水位较低或土壤干燥的区域
    的头像 发表于 01-02 21:00 526次阅读
    镁合金牺牲阳极与<b class='flag-5'>电解质</b>接触不良的原因

    Li3MX6全固态锂离子电池固体电解质材料

        研究背景 Li3MX6族卤化物(M = Y、In、Sc等,X =卤素)是新兴的全固态锂离子电池固体电解质材料。与现有的硫化物固体电解质相比,它们具有更高的化学稳定性和更宽的电化学稳定窗口
    的头像 发表于 01-02 11:52 1816次阅读
    Li3MX6全<b class='flag-5'>固态</b>锂离子电池固体<b class='flag-5'>电解质</b>材料

    一种薄型层状固态电解质的设计策略

    通量、足够的机械强度以及与电极的粘附性接触等性质。目前,集无机和有机成分优点于体的复合固态电解质(CSE)有望实现均匀、快速的锂离子通量,但如何打破机械强度和粘附力之间的权衡仍然是
    的头像 发表于 12-31 11:21 1501次阅读
    <b class='flag-5'>一种</b>薄型层状<b class='flag-5'>固态</b><b class='flag-5'>电解质</b>的设计策略

    半互穿网络电解质用于高电压锂金属电池

    研究背景 基于高镍正极的锂金属电池的能量密度有望超过400 Wh kg-1,然而在高电压充电时,高镍正极在高度去锂化状态下,Ni4+的表面反应性显著增强,这会催化正极与电解质界面之间的有害副反应
    的头像 发表于 12-23 09:38 1730次阅读
    半互穿网络<b class='flag-5'>电解质</b>用于高电压锂金属电池