0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

增强智能:启用神经网络

飘逸的D 2023-01-05 09:43 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

没有人愿意随着年龄的增长而加速他们的认知退化。运动脑震荡造成长期伤害的严重现实导致最近重新思考人类需要保护一项极其重要的资产-大脑-免受身体伤害。

科学家 Mikhail Lebedev、Ioan Opris 和 Manuel Casanova 撰写并正在研究大脑增强的主题。“项目负责人、北卡罗来纳州杜克大学的高级研究员列别杰夫说,到 2030 年,大脑增强的现实——通过大脑植入物增强智力——将成为日常生活的一部分,‘人们将不得不面对现实这种新范式。'”

倾向于技术的未来主义思想家雷·库兹韦尔 (Ray Kurzweil, 1948–) 明确表示,与电子计算机的处理速度相比,人类大脑的速度非常慢。尽管人脑具有并行处理大量信息的内在能力,但 Kurzweil 认为,不久之后数字计算机计算速度的提高将远远超过人脑的能力。他建议,如果科学家能够了解大脑如何进行混乱和复杂的活动,然后组织它们以进行理解,这将导致计算机处理方面的突破,这将远远超过任何可能导致人类智力提高的生物学改进。这种对大脑内部编程背后机制的理解可能会自然而然地改进人工智能 (AI)。

人工神经网络

人工智能领域的进展最近经历了快速转变,因为技术人员受到大脑生物神经网络 (BNN) 的启发,这是人类和动物思维的基础,类似地被采用到人工神经网络 (ANN) 中。人工神经网络的未来发展可能会导致机器人和人类认知增强方面的突破——提供机器和人类智能的动态增长。

人工神经网络涉及一个连接的节点系统,其行为方式类似于人类神经元,即传递神经冲动的细胞。神经元还可以处理信息并与其他神经元建立动态连接。这个过程允许学习。在 ANN 中,这种信息流通过非线性函数表示的复杂过程发生,通过使输出权重能够随时间动态响应的数学总和。这种效果允许强化学习发生。

人工神经网络已经取得了重大进展,在机器视觉、人类语音识别和医学诊断等领域为技术人员提供了帮助。人工神经网络利用最先进的电子元件,包括现场可编程门阵列 (FPGA)、中央处理器 (CPU)、视觉处理单元 (VPU)、数字信号处理器 (DSP)、人工智能加速器、专用集成电路 (ASIC)、和片上系统 (SoC)。

让未来成为可能

一家公司,英特尔®,正在使未来最令人惊叹的体验成为可能。利用内存和可编程解决方案的最新进展,英特尔正在颠覆行业并通过支持所有智能和连接的事物来解决全球挑战。英特尔提供FPGA、SoC、复杂可编程逻辑器件 ( CPLD )、VPU和补充技术,例如电源解决方案,为全球客户提供高价值的解决方案。

FPGA 为具有挑战性的应用(例如神经网络)提供了一个灵活的平台。从某种意义上说,FPGA 提供了一块画布,一种可以用来构建基础的tabula rasa (白板)。FPGA 内在的结构提供了知识产权 (IP) 块和组件来解决神经网络设计挑战,例如计算、逻辑和内存资源需求。

神经网络的世界是一个充满持续计算的世界。FPGA 加速器和浮点 DSP 设计与支持处理器相结合,为产品提供了速度、可预测性和能效,以应对正在进行的大数据分析、设备虚拟化和 ANN 固有的机器学习问题。在这个快速发展的领域,可重新编程的 FPGA 允许不断实施最新的算法和神经网络拓扑结构,确保高性能计算来增强人类的认知能力。英特尔 Stratix 10 FPGA或英特尔 Stratix ® V 高带宽 FPGA等高性能、可精确适配的 FPGA 软处理器是合适的选择。

FPGA 的复杂、内部化控制和信号处理可实现密集信号处理功能的快速高效移动。低功耗设计是重中之重,因此像人脑一样,神经活动处于等待状态时消耗的功率最小。与固定功能图形处理单元 (GPU) 相比,FPGA 具有功耗优势,是绝佳的选择。允许在并行处理模式下进行计算可以加速性能,从而改善认知模仿性能。通过传感相机整合视觉系统进行物体识别的能力提供了一种电物理传感,随着更多传感器的开发,这种传感可以随着时间的推移而扩展,有助于智能地接收和处理信息的能力。

结论

今天的电子元件使社会能够增强我们的智力。支持模拟和扩展人类智能能力的神经网络的部件、系统和解决方案正在为机器人和人类开启新的机会来感知和实现新的可能性。

审核编辑黄昊宇

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 神经网络
    +关注

    关注

    42

    文章

    4827

    浏览量

    106796
  • AI
    AI
    +关注

    关注

    89

    文章

    38091

    浏览量

    296591
  • 人工智能
    +关注

    关注

    1813

    文章

    49734

    浏览量

    261511
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    NMSIS神经网络库使用介绍

    NMSIS NN 软件库是一组高效的神经网络内核,旨在最大限度地提高 Nuclei N 处理器内核上的神经网络的性能并最​​大限度地减少其内存占用。 该库分为多个功能,每个功能涵盖特定类别
    发表于 10-29 06:08

    在Ubuntu20.04系统中训练神经网络模型的一些经验

    本帖欲分享在Ubuntu20.04系统中训练神经网络模型的一些经验。我们采用jupyter notebook作为开发IDE,以TensorFlow2为训练框架,目标是训练一个手写数字识别的神经网络
    发表于 10-22 07:03

    液态神经网络(LNN):时间连续性与动态适应性的神经网络

    1.算法简介液态神经网络(LiquidNeuralNetworks,LNN)是一种新型的神经网络架构,其设计理念借鉴自生物神经系统,特别是秀丽隐杆线虫的神经结构,尽管这种微生物的
    的头像 发表于 09-28 10:03 704次阅读
    液态<b class='flag-5'>神经网络</b>(LNN):时间连续性与动态适应性的<b class='flag-5'>神经网络</b>

    神经网络的并行计算与加速技术

    随着人工智能技术的飞速发展,神经网络在众多领域展现出了巨大的潜力和广泛的应用前景。然而,神经网络模型的复杂度和规模也在不断增加,这使得传统的串行计算方式面临着巨大的挑战,如计算速度慢、训练时间长等
    的头像 发表于 09-17 13:31 886次阅读
    <b class='flag-5'>神经网络</b>的并行计算与加速技术

    NVIDIA实现神经网络渲染技术的突破性增强功能

    近日,NVIDIA 宣布了 NVIDIA RTX 神经网络渲染技术的突破性增强功能。NVIDIA 与微软合作,将在 4 月的 Microsoft DirectX 预览版中增加神经网络着色技术,让开
    的头像 发表于 04-07 11:33 868次阅读

    神经网络压缩框架 (NNCF) 中的过滤器修剪统计数据怎么查看?

    无法观察神经网络压缩框架 (NNCF) 中的过滤器修剪统计数据
    发表于 03-06 07:10

    BP神经网络网络结构设计原则

    BP(back propagation)神经网络是一种按照误差逆向传播算法训练的多层前馈神经网络,其网络结构设计原则主要基于以下几个方面: 一、层次结构 输入层 :接收外部输入信号,不进行任何计算
    的头像 发表于 02-12 16:41 1254次阅读

    BP神经网络与卷积神经网络的比较

    BP神经网络与卷积神经网络在多个方面存在显著差异,以下是对两者的比较: 一、结构特点 BP神经网络 : BP神经网络是一种多层的前馈神经网络
    的头像 发表于 02-12 15:53 1307次阅读

    BP神经网络的优缺点分析

    BP神经网络(Back Propagation Neural Network)作为一种常用的机器学习模型,具有显著的优点,同时也存在一些不容忽视的缺点。以下是对BP神经网络优缺点的分析: 优点
    的头像 发表于 02-12 15:36 1581次阅读

    什么是BP神经网络的反向传播算法

    BP神经网络的反向传播算法(Backpropagation Algorithm)是一种用于训练神经网络的有效方法。以下是关于BP神经网络的反向传播算法的介绍: 一、基本概念 反向传播算法是BP
    的头像 发表于 02-12 15:18 1274次阅读

    BP神经网络与深度学习的关系

    BP神经网络与深度学习之间存在着密切的关系,以下是对它们之间关系的介绍: 一、BP神经网络的基本概念 BP神经网络,即反向传播神经网络(Backpropagation Neural N
    的头像 发表于 02-12 15:15 1340次阅读

    BP神经网络的基本原理

    BP神经网络(Back Propagation Neural Network)的基本原理涉及前向传播和反向传播两个核心过程。以下是关于BP神经网络基本原理的介绍: 一、网络结构 BP神经网络
    的头像 发表于 02-12 15:13 1518次阅读

    BP神经网络在图像识别中的应用

    BP神经网络在图像识别中发挥着重要作用,其多层结构使得网络能够学习到复杂的特征表达,适用于处理非线性问题。以下是对BP神经网络在图像识别中应用的分析: 一、BP神经网络基本原理 BP
    的头像 发表于 02-12 15:12 1188次阅读

    深度学习入门:简单神经网络的构建与实现

    深度学习中,神经网络是核心模型。今天我们用 Python 和 NumPy 构建一个简单的神经网络神经网络由多个神经元组成,神经元之间通过
    的头像 发表于 01-23 13:52 842次阅读

    人工神经网络的原理和多种神经网络架构方法

    在上一篇文章中,我们介绍了传统机器学习的基础知识和多种算法。在本文中,我们会介绍人工神经网络的原理和多种神经网络架构方法,供各位老师选择。 01 人工神经网络   人工神经网络模型之所
    的头像 发表于 01-09 10:24 2246次阅读
    人工<b class='flag-5'>神经网络</b>的原理和多种<b class='flag-5'>神经网络</b>架构方法