0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

碳纤维的微观结构及压缩破坏

深圳市赛姆烯金科技有限公司 来源:深圳市赛姆烯金科技有限 作者:深圳市赛姆烯金科 2022-11-23 09:38 次阅读

摘 要

碳纤维及其复合材料因其优异的拉伸性能和轻质特性而备受关注,但是,自从它们问世以来,碳纤维及其复合材料在压缩载荷下的较差性能一直是制约其广泛应用的主要障碍。

在本系列专题文章中,将会从微观结构和宏观角度系统地讨论造成这一缺陷的原因,并就如何提高碳纤维及其复合材料的压缩性能提出了建议。在上期文章中首先介绍了碳纤维压缩强度的常见测试方法,而本文中主要介绍碳纤维微观结构及压缩失效破坏。

附录:碳纤维及其复合材料压缩性能专题

《专题一:碳纤维压缩强度的测试方法》碳纤维的微观结构

为了开发提高碳纤维压缩性能的方法,了解碳纤维的加工过程及其最终微观结构是很重要的。生产碳纤维最常用的前驱体为聚丙烯腈(PAN)纤维,下图1显示了PAN纤维向碳纤维转变过程的微观结构规律。

碳纤维是通过对PAN纤维进行高度可控的连续热处理来制备的,典型的热处理过程包括:预氧化(又叫热稳定化),低温碳化和高温碳化。PAN纤维的热稳定是在空气气氛中进行的,通常PAN纤维在不同温度下经受200至300°C的热处理,并根据特定前驱体纤维的加工要求在规定的时间内施加张力。

0f86c51e-6acd-11ed-8abf-dac502259ad0.png

图1 碳纤维结构转变

在热稳定化过程中,PAN纤维的线性结构通过环化、脱氢和氧化等化学反应逐渐转变为梯型结构。在该阶段结束时,PAN纤维获得足够的热稳定性,可以承受碳化处理过程中的高温。

与热稳定化不同,碳化过程必须在惰性气氛中进行,以防止纤维热解。在低温碳化过程中,稳定的PAN纤维在高达1000°C的温度环境中,在精确的张力和停留时间下进行热处理。随后,所得纤维在高温碳化炉约1600°C左右的温度以及张力下进一步碳化,随着分子间交联和杂原子的去除,稳定的PAN聚合物转变为芳香族平面结构。

在高温碳化过程中,形成了排列成高度有序和层状微晶的石墨片状结构,它们之间的距离称为d间距,它由离域电子之间的π-π相互作用的程度决定。随着碳化处理的持续进行,剩余的非碳元素被消除,整体晶粒尺寸和排列增加。在芳构化程度较低且分子间相互作用不强的区域,该区域往往更加无序和无定形,但仍然被高度有序的晶体和堆叠的石墨结构包围。

在这种结构演变过程中,针状孔隙或缺陷在这些微晶之间演变,减少了纤维的侧向支撑并降低了纤维的压缩性能。因此,上述所有这些微观结构特征有助于确定碳纤维的整体性能。

碳纤维的压缩破坏

研究分析碳纤维的压缩断裂机制,可从根本上了解碳纤维在压缩载荷下的不良性能。碳纤维的压缩破坏与这些微晶在其无支撑区域的屈曲有关,如图2所示。有人认为,图2f所示的单个碳平面的屈曲是碳纤维在压缩载荷下的主要破坏机制。

而图2a中所展示的机制表明,碳平面在压缩载荷下的剪切破坏可低至0.4 MPa。如果剪切是唯一起作用的失效机制,则可以预期压缩性能与拉伸性能相同,如图2b所示,但显然不是这样。

0fffbadc-6acd-11ed-8abf-dac502259ad0.png

图2 碳纤维压缩破坏机理

图2c显示了错位晶粒的弯曲。在压缩载荷下,失向晶粒会受到严重的弯曲力,并可能在拉伸或压缩时失效。然而,也有研究称,较高的晶粒取向会降低抗压强度,这表明碳纤维的破坏机制与在压缩载荷下排列不整齐的晶体的严重弯曲无关,而与屈曲相反。

虽然对于图2d机理没有给出明确的解释,但可以理解,这一机制是不可能的,因为均匀的压缩载荷作用在微晶的横截面上,除非微晶平面之间存在严重缺陷。此外,如果考虑压缩下整个微晶的屈曲(图2e),则使用弹性理论进行理论计算得出的微观结构的预测抗压强度将超过真实的碳纤维抗压强度,从而使该理论失效。最后,根据理论计算和实际值之间的关系,提出碳纤维抗压强度受限于不受支撑区域弯曲单个微晶平面所需的应力,如图2f所示

参考碳纤维的微观结构,乱层石墨结构包围有大量孔隙。增加碳化时间和温度,可将这些乱层结构转变为高度排列和更紧密结合的石墨片层结构,同时增加了纤维模量。

然而,这些微晶和石墨片状结构(见图3)随着它们的生长以及相关的无支撑孔隙或区域的长度,会成为压缩性能的限制因素。为了解释高模量和高强度纤维的压缩破坏机制,有人使用了如图3所示的皮芯模型,其中纤维的皮层区域描绘了高度定向的大晶粒并包围针状孔。

10128220-6acd-11ed-8abf-dac502259ad0.png

图3 微观尺度碳纤维压缩破坏机理

由于较长孔隙的存在,在较低的应力水平下,这些较大晶粒的屈曲更容易发生在无支撑区域,导致随着负载的增加而破坏。相比之下,芯部区域多为无序和无定形结构,由更小的孔和更小的微晶组成。这种无序区域和较小的微晶可以在破坏前抵抗更高的压缩载荷,并有更大的能力通过裂纹扩展耗散能量。

审核编辑 :李倩

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 碳纤维
    +关注

    关注

    0

    文章

    81

    浏览量

    11810
  • 复合材料
    +关注

    关注

    2

    文章

    189

    浏览量

    12793
  • PAN
    PAN
    +关注

    关注

    1

    文章

    18

    浏览量

    14196

原文标题:【技术干货】一文详解影响碳纤维及其复合材料压缩性能的结构因素(二)碳纤维的微观结构及压缩破坏

文章出处:【微信号:深圳市赛姆烯金科技有限公司,微信公众号:深圳市赛姆烯金科技有限公司】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    基于隐形飞机喷气式发动机双S弯喷管的纤维缠绕工艺

    特征模拟结果 喷嘴的最内层由碳纤维增强碳化硅 (C-SiC) 复合材料制成,具有出色的热稳定性和耐腐蚀性。最外层由碳纤维增强塑料 (CFRP) 组成,这是一种轻质材料,可保持结构强度以抵抗轴向推力
    发表于 04-19 09:52

    高速电机必须依赖碳纤维转子吗?

    AVL那个30000rpm的电机、转子外圈线速度才155m/s ,其实用一般的硅钢片就能搞定;而红旗34000rpm的电机用的碳纤维材料。
    发表于 04-03 10:02 81次阅读
    高速电机必须依赖<b class='flag-5'>碳纤维</b>转子吗?

    单向碳纤维强化的柔性压电纳米复合材料的原理、结构设计及应用

    碳纤维(UDCF,单向碳纤维是一种仅在纤维方向上提供强度的各向异性材料)相结合,设计了一种新型高强度柔性器件。
    的头像 发表于 01-02 16:50 667次阅读
    单向<b class='flag-5'>碳纤维</b>强化的柔性压电纳米复合材料的原理、<b class='flag-5'>结构</b>设计及应用

    塑性碳纤维复合材料在笔记本电脑外壳中的应用

    在深入探讨其在笔记本电脑外壳中的应用之前,我们首先了解一下热塑性碳纤维复合材料的概念。
    的头像 发表于 12-19 10:17 235次阅读

    美国研究机构发展用于碳纤维制造的生物基丙烯腈原料

    减少前驱体的碳足迹更具挑战性,通常采取以下两种途径实现。其一是从非PAN的生物基来源开发一类新型前驱体,造纸行业中产生的一种纤维素副产品木质素,一直是这项工作关注重点,但迄今为止,利用木质素还无法生产出机械性能与PAN基碳纤维相当的产品。
    的头像 发表于 11-23 16:28 316次阅读

    碳纤维无耙化学镀银工艺研究报告

    由于碳纤维表面没有催化活性,通常在镀银前要进行敏化、活化处理。传统的敏化活化工艺一般要用到氯化亚锡、氯化锂等试剂,这些试剂不仅价格昂贵,还会产生含有重金属离子的废液。
    的头像 发表于 10-12 16:56 601次阅读
    <b class='flag-5'>碳纤维</b>无耙化学镀银工艺研究报告

    碳纤维增强塑料帽型试样的轴向压缩试验:电子万能试验机操作步骤详解!

    中扮演着重要角色。尤其是在航天飞行器的重量减轻与性能提升之间取得平衡,CFRP材料的应用成为一项具有挑战性的任务。 本文科准测控小编将介绍碳纤维增强塑料的帽型试样,通过轴向压缩试验来探究其在复杂载荷下的力学响应。帽型试样作
    的头像 发表于 10-08 10:00 197次阅读
    <b class='flag-5'>碳纤维</b>增强塑料帽型试样的轴向<b class='flag-5'>压缩</b>试验:电子万能试验机操作步骤详解!

    结构深、角度大、反射差?用共聚焦显微镜就对啦!

    法准确地解调出深度信息。VT6000系列共聚焦显微镜基于针孔点光源的共轭共焦原理,其依托弱光信号解析算法可以完整重建出近70°陡峭的复杂的结构形状。 二、反射差、信号弱 碳纤维纸类的表面反射率低
    发表于 08-04 16:12

    材料拉力试验机操作指南:连续碳纤维长丝和石墨纤维丝束拉伸测试全流程!

    长丝碳纤维和石墨纤维丝束作为先进复合材料的关键组成部分,正引领着材料科技的前沿。 ASTM D4018,作为连续长丝碳纤维和石墨纤维丝束性能测试的标准方法,提供了一套完整的测试流程,涵
    的头像 发表于 08-04 10:28 294次阅读
    材料拉力试验机操作指南:连续<b class='flag-5'>碳纤维</b>长丝和石墨<b class='flag-5'>纤维</b>丝束拉伸测试全流程!

    GB/T 3362标准下的碳纤维复丝拉伸测试:如何使用材料拉力试验机进行操作,步骤解析!

    碳纤维作为一种具备高比强度、高比模量、耐高温、耐腐蚀和尺寸稳定性等优异性能的材料,近年来在各个领域得到了广泛应用。然而,由于制备过程中的工艺条件波动和内在缺陷的存在,导致碳纤维的力学性能存在一定
    的头像 发表于 07-28 10:57 1519次阅读
    GB/T 3362标准下的<b class='flag-5'>碳纤维</b>复丝拉伸测试:如何使用材料拉力试验机进行操作,步骤解析!

    碳纤维复合材料检测外观尺寸测量-CASAIM手持式三坐标测量仪器

    在复合材料大家族中,碳纤维复合材料因其具有碳材料的固有本性特征的同时又兼具有优异的力学性能,并兼备纺织纤维的柔软可加工性,从诞生起一直是人们关注的焦点,在航空航天、汽车、建筑、医疗等领域应用十分广泛
    的头像 发表于 06-29 16:00 354次阅读
    <b class='flag-5'>碳纤维</b>复合材料检测外观尺寸测量-CASAIM手持式三坐标测量仪器

    碳纤维材料生产工艺流程中的温湿度监测如何实现

    碳纤维材料主要由碳元素组成,具有耐高温、抗磨擦、导电、导热及耐腐蚀等特性,质量比金属铝轻,强度却高于钢铁,是航空航天、轨道交通、土木建筑、能源、军工等工业的重要材料。 碳复合纤维材料的生丝碳化
    的头像 发表于 06-12 13:43 231次阅读
    <b class='flag-5'>碳纤维</b>材料生产工艺流程中的温湿度监测如何实现

    碳纤维复合芯导线耐张线夹发热原因分析

    碳纤维复合芯导线耐张线夹在线路运行中有发热现象,具体发热部位为耐张线夹引流板,其中4颗不锈钢螺栓温度最高,部分达到400 ℃左右。为防止因发热而产生线路故障,已对问题线路做了应急处理。为分析耐张线夹引流板发热原因,同时为消除后续耐张线夹发热引发线路故障提供理论支撑,现对发热耐张线夹做相应的试验分析。
    的头像 发表于 06-05 11:12 1208次阅读
    <b class='flag-5'>碳纤维</b>复合芯导线耐张线夹发热原因分析

    碳纤维单丝拉伸测试步骤详解:ISO 11566:1996标准下万能拉力试验机的应用

    碳纤维是一种具有卓越力学性能和轻质化特性的先进纤维材料,被广泛应用于航空航天、汽车、体育器材等领域。为了准确评估碳纤维材料的性能,了解其单丝的拉伸性能至关重要。 本文科准测控小编将探讨ISO
    的头像 发表于 05-29 10:14 1307次阅读
    <b class='flag-5'>碳纤维</b>单丝拉伸测试步骤详解:ISO 11566:1996标准下万能拉力试验机的应用

    碳纤维增强塑料(CFRP)弯曲试验分享:实验仪器和流程解析

    如何使用万能试验机对碳纤维增塑材料进行弯曲试验,评价材料的强度
    的头像 发表于 05-06 11:09 498次阅读
    <b class='flag-5'>碳纤维</b>增强塑料(CFRP)弯曲试验分享:实验仪器和流程解析