0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

微流控芯片装置与活细胞动态观察技术用于神经元轴突损伤机制研究

微流控 来源:微流控 作者:微流控 2022-10-13 16:20 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

神经系统功能的维持需要消耗大量的ATP。线粒体通过氧化磷酸化产生ATP,是神经元细胞能量的主要来源。由于神经元轴突高度特化的结构以及ATP在轴突中有限的扩散能力,轴突线粒体的稳态对于维持神经元轴突的能量代谢与功能至关重要。在成熟的中枢神经系统神经元中,轴突一旦受到急性损伤,轴突线粒体的功能与运输均出现异常,导致受损轴突局部面临能量缺失的压力,最终将导致轴突退化以及再生失败。受限于研究方法,在动物模型中很难对损伤后轴突中的线粒体动态以及能量代谢变化进行实时观察。2005年Taylor等人报道了利用微流控芯片分离神经元轴突的方法,为研究轴突损伤后线粒体稳态与能量代谢的分子调控机制提供了有力的研究工具。

近日,美国国立卫生研究院盛祖杭课题组在Cell Regeneration上发表了题为“Microfluidic devices as model platforms of CNS injury-ischemia to study axonal regeneration by regulating mitochondrial transport and bioenergetic metabolism”的方法论文章。该研究主要通过结合微流控芯片装置与活细胞动态观察技术,为研究中枢神经系统损伤后轴突内线粒体运输、能量代谢、蛋白质合成等细胞生物学事件提供了新的研究方法。

36548d74-4a94-11ed-a3b6-dac502259ad0.jpg

首先,研究人员参考Taylor等人的报道设计微流控芯片,并利用该装置将体外培养的中枢神经系统神经元的轴突与胞体和树突分离。随后,使用机械损伤、低糖低氧等方法模拟体内轴突损伤和脑卒中等急性应激,观察神经元轴突急性损伤后退化和再生的过程。与之前在动物模型中的研究一致,成熟的中枢神经系统神经元在受到急性损伤后出现明显的轴突退化、再生失败等表型。

366726d2-4a94-11ed-a3b6-dac502259ad0.jpg

使用微流控芯片建立神经元损伤与低糖低氧模型

接着,使用荧光探针GO-ATeam2实时指示神经元中的ATP水平后发现,轴突损伤和低糖低氧状态下,轴浆、轴突末端、神经元胞体的ATP水平呈现出不同的变化趋势和应答时序。使用荧光蛋白标记轴突线粒体后发现,轴突损伤阻断轴突线粒体的双向运输,并且在损伤12小时后难于恢复;而低糖低氧刺激后,轴突线粒体的逆向运输相比于正向运输表现出明显的回复趋势,暗示着神经元在两种应激之间不同的分子应答机制。

36e2e5ba-4a94-11ed-a3b6-dac502259ad0.jpg

使用ATP探针Go-ATeam2检测神经元不同损伤后能量代谢的动态变化

最后,利用嘌呤霉素-近端标记技术对轴突中特异蛋白的合成进行了原位检测。结果显示在低氧低糖状态下,线粒体激酶PAK5在轴突中的蛋白合成水平明显增高,8小时后逐渐恢复,而线粒体蛋白Miro-1在轴突中的蛋白合成水平没有显著变化。

37129878-4a94-11ed-a3b6-dac502259ad0.jpg

使用Puro-PLA技术原位监测神经元损伤后轴突中蛋白合成的动态变化

综上所述,与中枢神经系统的体内损伤模型相比,借助微流控芯片装置建立的体外损伤模型易于实现、重复性高,并且可以结合活细胞成像实时观察受损神经元中的动态变化。通过高内涵成像技术,损伤轴突中的线粒体运输以及能量代谢可以作为神经损伤修复相关药物筛选的重要指标。

审核编辑:郭婷

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 芯片
    +关注

    关注

    462

    文章

    53534

    浏览量

    459106

原文标题:微流控芯片+活细胞成像,用于神经元轴突损伤机制研究

文章出处:【微信号:Micro-Fluidics,微信公众号:微流控】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    神经元设备和脑机接口有何渊源?

    HUIYING神经元设备的发展历程概述神经元设备的发展经历了从基础信号检测到多功能智能集成的演进过程。自1920年代脑电图(EEG)信号首次被发现以来,神经电极技术逐步发展,如1957
    的头像 发表于 11-03 18:03 1160次阅读
    <b class='flag-5'>神经元</b>设备和脑机接口有何渊源?

    脉冲神经元模型的硬件实现

    如图所示展示了LIF神经元的膜电势Vmem随时间戳timestamp动态变化的过程,当接收到输入脉冲后,LIF神经元的膜电势值Vmem便会升高,直至达到阈值电压Vthersh,此时神经元
    发表于 10-24 08:27

    SNN加速器内部神经元数据连接方式

    的数量级,而且生物轴突的延迟和神经元的时间常数比数字电路的传播和转换延迟要大得多,AER 的工作方式和神经网络的特点相吻合,所以受生物启发的神经形态处理器中的NoC或SNN加速器通常使
    发表于 10-24 07:34

    基于宽带功率放大器的声细胞高效分选创新方案

    实验名称: 声细胞分选 研究方向: 基于声控的细胞分选
    的头像 发表于 09-28 11:29 388次阅读
    基于宽带功率放大器的声<b class='flag-5'>流</b>控<b class='flag-5'>细胞</b>高效分选创新方案

    【「AI芯片:科技探索与AGI愿景」阅读体验】+神经形态计算、类脑芯片

    网络是 AI芯片发展的重要方向。如果利用超导约瑟夫森结(JJ)来模拟与实时突触电路相连的神经元,神经网络运行的速度要比目前的数字或模拟技术提升几个数量级。 1、超低温类脑
    发表于 09-17 16:43

    功能性电刺激FES对中风后上肢功能的改善

    累及基底节、内囊后肢等关键结构,造成皮质脊髓束(CST)的轴突中断或脱髓鞘改变。组织病理学研究显示,急性期病灶周围神经元出现细胞水肿、线粒体肿胀,突触密度在72小
    的头像 发表于 07-05 19:04 4824次阅读
    功能性电刺激FES对中风后上肢功能的改善

    基于细胞控的阻抗测试解决方案

    基于细胞控的阻抗测试技术,作为一种新兴的技术,结合了
    的头像 发表于 07-02 11:07 1045次阅读
    基于<b class='flag-5'>细胞</b><b class='flag-5'>微</b><b class='flag-5'>流</b>控的阻抗测试解决方案

    无刷直流电机单神经元自适应智能控制系统

    摘要:针对无刷直流电机(BLDCM)设计了一种可在线学习的单神经元自适应比例-积分-微分(PID)智能控制器,通过有监督的 Hebb学习规则调整权值,每次采样根据反馈误差对神经元权值进行调整,以实现
    发表于 06-26 13:36

    无刷直流电机单神经元PI控制器的设计

    摘要:研究了一种基于专家系统的单神经元PI控制器,并将其应用于无刷直流电机调速系统中。控制器实现了PI参数的在线调整,在具有PID控制器良好动态性能的同时,减少微分项对系统稳态运行时的
    发表于 06-26 13:34

    功率放大器在液滴细胞分选中的应用

    摘要:通过对液滴的大小和形状进行控制,可以实现对单个细胞的分选。本文综述了国内外在液滴分选领域的最新研究进展,并介绍了不同类型的功率放大器及其在
    的头像 发表于 04-03 10:08 590次阅读
    功率放大器在液滴<b class='flag-5'>微</b><b class='flag-5'>流</b>控<b class='flag-5'>细胞</b>分选中的应用

    Aigtek功率放大器在控医学领域研究中有哪些应用

    重要意义。 技术在医学领域的应用主要包括以下几个方面: 1.细胞分析和筛选:
    的头像 发表于 04-01 10:58 591次阅读
    Aigtek功率放大器在<b class='flag-5'>微</b><b class='flag-5'>流</b>控医学领域<b class='flag-5'>研究</b>中有哪些应用

    芯片细胞培养检测中的应用

    芯片系统由于分析速度快、试剂消耗少、便于集成和高通量分析等优点而被广泛应用于生化分析等各领域.过去20年中,伴随材料科学的发展以及利用
    的头像 发表于 02-06 16:07 799次阅读

    Aigtek高电压放大器细胞筛选测试

    、应用以及高压放大器在其中的作用。 细胞筛选的基本概念 细胞筛选是指在
    的头像 发表于 01-20 16:33 677次阅读
    Aigtek高电压放大器<b class='flag-5'>微</b><b class='flag-5'>流</b>控<b class='flag-5'>细胞</b>筛选测试

    用于细胞成像的一次性细胞培养芯片

    尽管最近几年我们对细胞内过程的了解越来越多,但近期内100年来细胞培养的基本过程没有根本性的改变。然而,观察细胞的方法,却在近些年进行一场革命,如相差,差分干涉对照,共聚集和荧光等都应
    的头像 发表于 12-17 09:41 693次阅读

    玻璃芯片的特点

    得它们非常适合于需要光学观察和分析的应用,如荧光显微镜观察、激光诱导荧光(LIF)检测等。 2. 优异的耐高压性 玻璃芯片能够承受较高
    的头像 发表于 12-13 15:26 857次阅读