0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

基于iTAC的机器学习和人工智能应用于SMT制造

工程师邓生 来源:actSMTC 作者:actSMTC 2022-09-02 10:42 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

数据是提高效率、避免错误和创造更多附加价值的基础。SMT制造商面临的挑战是必须适当地收集和分析数据,来从数据中获得价值。MES/MOM专家iTAC Software AG为此提供iTAC.SMT.Edge。这个设备集成平台用于标准化和集中化数据。随后的实时数据分析可进一步处理由iTAC.IIoT.Edge软件处理, 这包括了设备学习和人工智能应用等在解决方案的基础上组合与实施。

“在SMT生产中,有来自不同供应商和不同年份的设备和系统,它们使用不同的通讯协议。这使得数据采集和分析更加困难,”iTAC Software AG的首席执行官Peter Bollinger解释说,他继续说道:“数据必须被可靠地采集到更高级别的系统。我们的iTAC.SMT.Edge和iTAC.IIoT.Edge使我们能够轻松地实时收集、链接和分析所有SMT设备的数据。”

iTAC.IIoT.Edge等分析工具将IIoT数据与MES数据相结合,形成平面数据结构,并实时分析这些数据。这些数据包也可以转发给客户使用的其他分析或ML/AI工具。

用于监测和分析的AI算法

通过使用这两个边缘解决方案作为iTAC的MOM(制造运营管理)的关键组成部分,可以为先进的和数字化的SMT制造开发许多应用案例。例如,生产节拍时间监测。人工智能算法智能地监测设备异常行为可能造成的生产节拍时间变化。

“在生产中,争取更高的效率需要不断改善生产节拍时间,”Peter Bollinger说,并继续说道:“通过主动监测次数,并利用人工智能检测工厂的异常行为,并在出现偏差时及时报警,可以明显的节省时间。这是因为发生问题时所需的响应时间,以及因而减少的产出时间。此外,有针对性的并主动解决问题也变得可行了。”

另一个应用案例是减少AOI的误判。人工智能算法将自动测试设备的误判率降到最低。这是因为大多数采用AOI的SMT生产线必须处理较高的误判(30-80%)。通过使用人工智能,可以高度可靠地区分真正的缺陷和误报。对人工复查的需求以及相关的时间和成本最多可减少60%。这带来了更高的产量,同时支持零缺陷生产。

同时,基于iTAC解决方案,人工智能算法可以计算出设备的剩余可用寿命,有利于预测性维修。通过监测机器状态数据,人工智能算法可以预测问题或即将发生的系统故障,如此能够及时进行设备维修保养或估计剩余的可用时间。

以上是众多能够可以用来实现SMT生产的效率提高、成本节约和数字化进步的部分应用案例。




审核编辑:刘清

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • smt
    smt
    +关注

    关注

    45

    文章

    3151

    浏览量

    75186
  • 人工智能
    +关注

    关注

    1813

    文章

    49777

    浏览量

    261825
  • 机器学习
    +关注

    关注

    66

    文章

    8541

    浏览量

    136266

原文标题:iTAC成功将机器学习和人工智能应用于SMT制造

文章出处:【微信号:actSMTC,微信公众号:actSMTC】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    自主生产:制造业的未来

    的梦想,而是一场已经到来的变革。它不仅能提高效率,还能提升工业生产的质量。其中的决定性因素是人、机器人工智能的紧密结合,在这种合作关系中,人永远是最后的决定者。
    发表于 09-15 15:08

    挖到宝了!人工智能综合实验箱,高校新工科的宝藏神器

    和生态体系带到使用者身边 ,让我们在技术学习和使用上不再受制于人。 三、多模态实验,解锁AI全流程 它嵌入了2D视觉、深度视觉、机械手臂、语音识别、嵌入式传感器等多种类AI模块,涵盖人工智能领域主要
    发表于 08-07 14:30

    挖到宝了!比邻星人工智能综合实验箱,高校新工科的宝藏神器!

    和生态体系带到使用者身边 ,让我们在技术学习和使用上不再受制于人。 三、多模态实验,解锁AI全流程 它嵌入了2D视觉、深度视觉、机械手臂、语音识别、嵌入式传感器等多种类AI模块,涵盖人工智能领域主要
    发表于 08-07 14:23

    超小型Neuton机器学习模型, 在任何系统级芯片(SoC)上解锁边缘人工智能应用.

    Neuton 是一家边缘AI 公司,致力于让机器 学习模型更易于使用。它创建的模型比竞争对手的框架小10 倍,速度也快10 倍,甚至可以在最先进的边缘设备上进行人工智能处理。在这篇博文中,我们将介绍
    发表于 07-31 11:38

    人工智能在汽车行业中的应用

    人工智能(AI)是许多行业和应用领域的热门话题。但对于汽车行业而言,这并非一个新概念。人工智能,尤其是机器学习——即通过数据让机器
    的头像 发表于 07-31 11:07 1764次阅读

    人工智能究竟对电子产业产生哪些的影响?

    人工智能已彻底改变了全球技术格局,在众多工业领域得到广泛应用。在电子产业中,它正成为实现新功能、提升效率以及优化制造流程的关键推动力。例如,嵌入式行业受益于将人工智能集成到电子设备中,机器
    的头像 发表于 07-28 18:26 837次阅读
    <b class='flag-5'>人工智能</b>究竟对电子产业产生哪些的影响?

    最新人工智能硬件培训AI 基础入门学习课程参考2025版(大模型篇)

    人工智能大模型重塑教育与社会发展的当下,无论是探索未来职业方向,还是更新技术储备,掌握大模型知识都已成为新时代的必修课。从职场上辅助工作的智能助手,到课堂用于学术研究的智能工具,大模
    发表于 07-04 11:10

    光峰科技任人工智能智能制造专业委员会委员

    在当今全球科技竞争日益激烈的时代,人工智能智能制造已成为推动经济发展和产业升级的核心力量。3月20日,深圳上市公司协会人工智能智能
    的头像 发表于 03-21 16:39 608次阅读

    数学专业转人工智能方向:考研/就业前景分析及大学四年学习路径全揭秘

    随着AI技术的不断进步,专业人才的需求也日益增长。数学作为AI的基石,为机器学习、深度学习、数据分析等提供了理论基础和工具,因此越来越多的数学专业学生开始考虑在人工智能领域发展。本文主
    的头像 发表于 02-07 11:14 1724次阅读
    数学专业转<b class='flag-5'>人工智能</b>方向:考研/就业前景分析及大学四年<b class='flag-5'>学习</b>路径全揭秘

    人工智能机器学习以及Edge AI的概念与应用

    人工智能相关各种技术的概念介绍,以及先进的Edge AI(边缘人工智能)的最新发展与相关应用。 人工智能机器学习是现代科技的核心技术
    的头像 发表于 01-25 17:37 1605次阅读
    <b class='flag-5'>人工智能</b>和<b class='flag-5'>机器</b><b class='flag-5'>学习</b>以及Edge AI的概念与应用

    【「具身智能机器人系统」阅读体验】1.初步理解具身智能

    人工智能机器人技术和计算系统交叉领域感兴趣的读者来说不可或缺的书。这本书深入探讨了具身智能这一结合物理机器人和智能算法的领域,该领域正在
    发表于 12-28 21:12

    【「具身智能机器人系统」阅读体验】+数据在具身人工智能中的价值

    嵌入式人工智能(EAI)将人工智能集成到机器人等物理实体中,使它们能够感知、学习环境并与之动态交互。这种能力使此类机器人能够在人类社会中有效
    发表于 12-24 00:33

    人工智能推理及神经处理的未来

    人工智能行业所围绕的是一个受技术进步、社会需求和监管政策影响的动态环境。机器学习、自然语言处理和计算机视觉方面的技术进步,加速了人工智能的发展和应用。包括医疗保健、金融和
    的头像 发表于 12-23 11:18 880次阅读
    <b class='flag-5'>人工智能</b>推理及神经处理的未来

    【「具身智能机器人系统」阅读体验】+初品的体验

    动态互动的。 该理论强调智能行为源于智能体的物理存在和行为能力,智能体必须具备感知环境并在其中执行任务的能力。具身智能的实现涵盖了机器
    发表于 12-20 19:17

    如何在低功耗MCU上实现人工智能机器学习

    人工智能 (AI) 和机器学习 (ML) 的技术不仅正在快速发展,还逐渐被创新性地应用于低功耗的微控制器 (MCU) 中,从而实现边缘AI/ML的解决方案。
    的头像 发表于 12-17 16:06 1303次阅读