0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

关于集成光子应用的综述文章

倩倩 来源:光行天下 作者:光行天下 2022-08-12 10:21 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

近日,《应用物理评论》(Applied Physics Reviews)在线发表了中国科学院上海微系统所信息功能材料国家重点实验室欧欣团队撰写的综述文章(Silicon carbide for integrated photonics),并被编辑推荐为该期刊7月份“热点文章”(Featured Article)。该综述以薄膜制备到光子器件实现为主体,全方面回顾了碳化硅单晶薄膜制备及其在集成非光学、光量子学和应用物理学等领域中的发展历程和关键技术,并展望了未来的发展方向与技术挑战。

光子集成电路(Photonic Integrated Circuit,PIC)由密集的分立集成光学元器件构成,工作时以光子为信息载体,有望解决目前信息技术领域面临的信息传输带宽和处理速度的问题。通常情况下,光子集成电路以硅作为材料平台,但基于单一硅基光子集成电路无法同时实现光子芯片所需的各项性能,因而新平台不断发展如铌酸锂(LiNbO3)、磷化铟(InP)、氮化硅(Si3N4)、碳化硅(SiC)等材料平台。其中,SiC集成光学因SiC具有的高折射率、宽透光窗口、高非线性系数、CMOS工艺兼容等特性成为颇具潜力的集成光子芯片发展方向。

光子集成电路的衬底需求高质量的薄膜材料,碳化硅光子学发展十余年以来,多种技术方案制备的碳化硅薄膜被用于光子器件的验证,例如,外延生长、化学气相沉积、离子束剥离与转移、精密研磨抛光等薄膜制备方法。虽然碳化硅薄膜和光学器件的实现方法多样,但近年来碳化硅光子学领域的进展主要基于一种被称为绝缘体上碳化硅(SiC-on-insulator,SiCOI)的薄膜材料。SiC薄膜的晶型也有多种如3C-SiC、α-SiC、4H-SiC等,其中,只有4H晶型因最大的禁带宽度(3.2 eV),产业界日渐成熟的6寸4H-SiC晶圆生长技术以及丰富的量子光源被广泛研究,4H-SiCOI薄膜材料成为产业与科研界的重点关注方向。

近年来,得益于碳化硅晶圆键合、精密抛光和微纳器件加工等技术的趋于成熟,高性能的集成光子器件在碳化硅平台上得以实现。这些光器件包括高品质因子光学谐振腔、低损耗波导、电光调制器、光学微腔频率梳、可调控量子光源等。在光学频率梳方面(图1),2021年上海微系统所欧欣团队和华东师范大学程亚团队合作,验证了高品质因子的SiC微腔及相应的宽谱光频梳产生【Light Sci Appl 10, 139 (2021)】,同年美国斯坦福大学Jelena课题组利用低温技术实现了孤子微梳【Nat. Photon. 16, 52-58 (2022)】,2022年美国卡耐基梅隆大学李庆研究团队通过色散设计实现了150THz倍频程的光频梳【Photon. Res. 10, 870-876 (2022)】。在电光调制器方面,CMOS级电压驱动的微环电光调制也得到验证【Nat. Commun. 13, 1851 (2022)】,其调制带宽大于10GHz,由于SiC的高导热特性,由SiC制成的电光调制模块在高功率耐受性能上要显著优于铌酸锂电光调制器和硅等离子色散调制器。 SiC在集成光量子芯片上研究也取得了重要进展。SiC中的固态自旋色心光源具有优异的自旋性质,近期,中国科学技术大学许金时团队利用离子注入制备的PL6色心在室外下具备与金刚石NV色心相媲美的亮度(150k/s)和对比度(30%)【Natl. Sci. Rev. 9, 5, nwab122 (2021)】。在碳化硅色心与微腔耦合调控方面,美国斯坦福大学Jelena团队在薄膜中实现单个硅空位色心的定位与调谐,并验证与微腔共振的色心光源发射强度可提升120倍【Nat. Photonics 14, 330-334 (2020)】。单光子源与微纳结构集成是集成量子光学的主要技术途径,通常与微纳结构集成的碳化硅色心面临自旋性质的衰退(相比于体材料),而研究利用低能量的He离子制备了与体材料SiC中色心具有同等自旋性质的色心(图2),这为下一步构建基于碳化硅色心体系的集成光量子网络奠定了基础【Nat. Mater. 21, 67-73 (2022)】。

目前,SiC集成光子学正处于快速发展阶段。更大规模的碳化硅薄膜集成光路拥有重大机遇,也面临着挑战。鉴于光子集成技术本身经过在硅、III-V族、铌酸锂平台上的长期积累,相关器件的设计和微纳加工已具有比较成熟的方案,因此未来更大规模、更高集成度、更高性能的碳化硅光路的挑战主要来自于高质量碳化硅薄膜的制备。

上海微系统所异质集成XOI课题组在晶圆级的高性能SiC单晶薄膜的制备上开展了长期的、系统的研究:2019年,制备出高均匀度、4英寸的碳化硅单晶薄膜(SiCOI)异质衬底,开发了SiC微纳光子结构加工工艺【Opt. Mater. 107, 109990 (2020)】,同时,通过离子注入在薄膜中发现了室温下可寻址、可相干操控的新型双空位自旋态【npj Quantum Inf. 6, 38 (2020)】;2021年,在进一步优化材料损耗、晶圆键合、微纳加工工艺基础上,制备出超低损耗的碳化硅薄膜,并将SiCOI微腔的Q值提升到7.1×106,该值为目前SiC光子学领域内的最高值,高质量SiC单晶薄膜的制备将带来能耗更低、性能更高、尺寸更为紧凑的光子学芯片【Light Sci. Appl. 10, 139 (2021)】;2022年,通过设计双层垂直耦合器和1X2多模干涉仪,将自组装量子点确定性光源转移到4H-SiCOI光芯片上,实现了确定性单光子的高效路由和二阶关联函数片上实验测量(Laser Photonics Rev. 2022, 2200172)。

SiC材料是极具魅力的半导体光学平台,集多种优异特性于一身,继承了硅的优异性能,兼具与金刚石比拟的特性,结合目前在SiC非线性光学及SiC片上量子光学领域取得的进展,可以预见SiC在更大规模的非线性光学、集成光学、片上量子光学等光子学应用中的广阔前景。正如SOI、LNOI的发展一样,实现集成光子学相关应用的前提需要以高质量的SiCOI材料为基础,科研人员将继续致力于这一发展方向,探究低损耗、高均匀度的4H-SiCOI制备方法,优化SiC微纳加工工艺,探索SiC色心自旋量子特性,推动SiC在非线性光学、集成光学、片上量子光学等光子学领域的发展。同时,本团队开发的SiC单晶薄膜制备技术有望进一步应用于低成本SiC晶圆的开发,在SiC功率器件、SiC/GaN射频器件方面具有广阔的应用前景。

05f15b08-1970-11ed-ba43-dac502259ad0.jpg

图1. 碳化硅光学微腔中光学频率梳的产生

060898cc-1970-11ed-ba43-dac502259ad0.jpg

图2. 与波导集成的碳化硅色心光源

06142502-1970-11ed-ba43-dac502259ad0.png

图3. 晶圆级超低光学损耗的碳化硅单晶薄膜

063df3f0-1970-11ed-ba43-dac502259ad0.png

图4. 4英寸晶圆级绝缘体上碳化硅薄膜及微环谐振腔;离子注入在4H-SiC中引入的新型发光缺陷PL8

0650bce2-1970-11ed-ba43-dac502259ad0.png

图5. 超高Q值的SiC微谐振腔中的多次谐波现象和克尔光频梳

065f7d4a-1970-11ed-ba43-dac502259ad0.png

图6. 碳化硅-量子点混合集成系统

论文链接:https://aip.scitation.org/doi/10.1063/5.0079649

审核编辑 :李倩

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 集成电路
    +关注

    关注

    5446

    文章

    12487

    浏览量

    372875
  • 晶圆
    +关注

    关注

    53

    文章

    5352

    浏览量

    131770
  • 碳化硅
    +关注

    关注

    25

    文章

    3345

    浏览量

    51781

原文标题:上海微系统所发表关于集成光子应用的综述文章

文章出处:【微信号:光行天下,微信公众号:光行天下】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    SOA应用-光子集成

    SOA
    天津见合八方光电科技有限公司
    发布于 :2025年12月02日 14:50:11

    先进PIC光子集成工艺

    据中心领域的快速发展,对高速数据处理与传输提出了更高要求。为满足 这些需求,器件封装技术的发展聚焦于实现小型化、高效率和高性能,而光子集成芯片封装 正是满足这些需求的理想方案。本文综述光子集成芯片封装在元件级、芯片级和
    的头像 发表于 09-18 11:10 793次阅读
    先进PIC<b class='flag-5'>光子集成</b>工艺

    光子封装中胶水及其使用教程

    ----翻译自 Arizona 大学 Jared Talbot 于 2016.12.4 撰写的文章 引言 本教程回顾了当今光子学领域中使用的各种胶水及其具体用途。首先,概述了现有不同类型 的胶水
    的头像 发表于 09-08 15:34 284次阅读
    <b class='flag-5'>光子</b>封装中胶水及其使用教程

    「封装技术」PIC光子集成封装-从样机到量产

    翻译自 Lee Carroll在 2016年发表的文章 摘要 晶圆厂提供的光子集成电路PIC的多项目晶圆(MPW)服务,使得研究人员和中小型企业(SMEs)能够低成本完成硅光子芯片的设计和制造。尽管
    的头像 发表于 08-28 10:11 932次阅读
    「封装技术」PIC<b class='flag-5'>光子集成</b>封装-从样机到量产

    从材料到集成光子芯片技术创新,突破算力瓶颈

    电子发烧友网报道(文/李弯弯)在全球科技竞争的浪潮中,光子芯片作为突破电子芯片性能瓶颈的核心技术,正逐渐成为各方瞩目的焦点。它以光波作为信息载体,通过集成激光器、调制器、探测器等光电器件,实现了低
    的头像 发表于 08-21 09:15 8061次阅读

    关键技术突破!国内首个光子芯片中试线成功下线首片晶圆

    酸锂调制器芯片的规模化量产,该芯片的关键技术指标达到国际先进水平。 光子芯片关键技术突破 光子芯片也被称为光子集成电路(Photonic Integrated Circuit,PIC),是一种基于
    的头像 发表于 06-13 01:02 4721次阅读

    应用介绍 | 单光子计数拉曼光谱

    光子计数拉曼光谱实验装置示意图脉冲激光聚焦在样品表面,激发样品产生荧光和拉曼散射,单光子探测器探测这些受激发射和散射。TimeTagger采集所有光子事件的时间戳并加以实时分析。1►什么是单
    的头像 发表于 05-20 16:07 655次阅读
    应用介绍 | 单<b class='flag-5'>光子</b>计数拉曼光谱

    深入解析硅基光子芯片制造流程,揭秘科技奇迹!

    在信息技术日新月异的今天,硅基光子芯片制造技术正逐渐成为科技领域的研究热点。作为“21世纪的微电子技术”,硅基光子集成技术不仅融合了电子芯片与光子芯片的优势,更以其独特的高集成度、高速
    的头像 发表于 03-19 11:00 2419次阅读
    深入解析硅基<b class='flag-5'>光子</b>芯片制造流程,揭秘科技奇迹!

    无桥PFC变换器综述

    拓扑的发展历程进行了全面综述,并将无桥 PFC 变换器拓扑合成方案分为三大类,分别进行了详细介绍。最后,给出了无桥变换器拓扑的发展方向。 关键词:无桥 PFC 变换器;双极性增益;Boost 变换器
    发表于 03-13 13:50

    集成电路和光子集成技术的发展历程

    本文介绍了集成电路和光子集成技术的发展历程,并详细介绍了铌酸锂光子集成技术和硅和铌酸锂复合薄膜技术。
    的头像 发表于 03-12 15:21 1599次阅读
    <b class='flag-5'>集成</b>电路和<b class='flag-5'>光子集成</b>技术的发展历程

    EastWave应用:自动计算光子晶体透反率

    本案例使用“自动计算透反率模式”研究光子晶体的透反率,将建立简单二维光子晶体结构以说明透反率的计算方法。 模型示意图: 预览网格划分效果如下: 观察到下面的实时场: 记录得到数据如下: 双击
    发表于 02-28 08:46

    Lightmatter借助Cadence工具构建光子芯片

    生成式 AI 日益普及,托管和训练这些算法所消耗的能源也随之增加。光子技术以光子为主要计算源,基于光子的系统具有低功耗的优势,有助减少碳排放,改善地球生态环境,提升居民生活质量,更适用于最先进的 AI 和 HPC 工作负载。
    的头像 发表于 02-24 10:37 1053次阅读

    集成光子学的里程碑:大功率可调谐激光器开辟新天地

    该设备和潜在应用 研究人员利用 LMA 放大器在硅光子技术上制造出了近 2 瓦的大功率可调谐激光器。这一进展将彻底改变集成光子学,并有可能应用于太空探索,在提高能力的同时降低卫星成本。 当今世界
    的头像 发表于 02-17 06:29 562次阅读
    <b class='flag-5'>集成</b><b class='flag-5'>光子</b>学的里程碑:大功率可调谐激光器开辟新天地

    从数据中心到量子计算,光子集成电路引领行业变革

    来源:Yole Group 光子集成电路正在通过实现更快的数据传输、推进量子计算技术、以及变革医疗行业来彻底改变多个领域。在材料和制造工艺的创新驱动下,光子集成电路有望重新定义光学技术的能力,并在
    的头像 发表于 01-13 15:23 1033次阅读

    硅基波导集成的片上光谱仪综述

    近日,天津大学精密仪器与光电子工程学院的光子芯片实验室综述了近年来硅基波导集成的片上光谱仪的研究成果,论文以“Integrated optical spectrometers on silicon photonics platf
    的头像 发表于 01-06 16:30 1567次阅读
    硅基波导<b class='flag-5'>集成</b>的片上光谱仪<b class='flag-5'>综述</b>