0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

800V推快充如何解决电动车核心问题

lPCU_elecfans 来源:电子发烧友网 作者:电子发烧友网 2022-08-02 09:17 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

电子发烧友网报道(文/程文智)新能源汽车这两年销量是节节攀升,其技术发展也是日新月异,很多以前在科幻电影中才会见到的酷炫技术开始被汽车厂商采用,比如抬头显示、超大屏幕、自动驾驶等等。最近对于800V高压平台成为了一个热议的话题,不少车企已经推出,或即将推出800V平台的新能源汽车。

800V高压平台俨然成为了一个发展趋势,那么升级800V高压平台后,汽车上的电子元器件产品需要有哪些改变呢?据业内人士预计,升级800V后,电机、功率半导体、保险丝连接器,以及高压线束方面都会有一定的影响。接下来让我们逐个看看。

电机的变化

新能源汽车中最重要的是一个零部件就是电机,它的汽车的动力来源。一般来说,电机整体体积跟电机的扭矩成正比,功率不变的话,扭矩越小,体积也将越小,相应的重量也就越小了。升级到800V以后,电机的转速可以做到2万转,扭矩就可以做小,这样汽车电机的用铜和铝的量就会减少。

电机的导线外面有一层绝缘漆,随着电压升级到800V,对绝缘漆的材料和厚度有更高的要求。另外,800V电机对绝缘纸(铜线和硅钢片之间的介质)和安全距离也提出了更高的要求。这些要求会带来零部件的升级,电机成本上升。同时电压的升高会带来电流的提升和温度的提高,所以800V电机大部分供应商都会选择使用油冷技术。由于电机体积更小以及散热效率的更高要求,供应商更偏好油冷技术的均匀散热特点以及高效的散热效率。

不过,电机的成本主要是用铜量和铝量来核算的,耐压材料(高耐压绝缘漆)的占比比较少,而800V平台的电机铜的成本大约会减少一半,铝壳用量也会降低,因此,电机的总体成本可以下降。

在电机供应商方面,国际厂商有博世、联合电子、大陆、法雷奥、博格华纳等,国内有方正在做800V电机和扁线电机。但是国际厂商的节奏会比国内厂商慢,响应速度慢。此外,国内还有汇川、精进电动、华域电动也在做扁线电机。

功率半导体成本会有所上升

电动汽车中另一个核心部件是电机控制系统,系统内的CPU、电流电压采样的传感器等元件都需要用到电源,这些电源很多都是从母线获取的,如今升级到了800V之后,母线电压也变成了800V,此时需要从800V转低压(12V或48V)。

此外,一些辅助系统,比如OBC充电、DC/DC、12V系统、信号、娱乐、音响等需要用到电源的地方,也需要相应的升级,比如耐压需要更高等。用到的器件的成本会有一定的提升,有业内人士估计成本提升在20%~30%之间。

其实,升级到800V平台,最重要的一个升级就是电驱,其中,SiC的使用是电驱升级的核心要点。从SiC本身的特性来说:

耐高温能力更强(可在200度条件下正常工作,传统硅基IGBT一般只能在175度以下工作,因此对冷却系统要求更低);

耐压特性特别好;

低开关损耗(IGBT拖尾损耗更高)。

目前主流还是400-500V电压平台,未来上800V推快充是为了解决电动车的两个核心问题:

里程焦虑;

充电速度慢(理想ONE增程式,小鹏G9高电压,蔚来换电)。

在传统400V电压平台下,特斯拉推出250kW的超级快充;在800V平台下,小鹏最新推出400kW快充,充电效率达到5C,10分钟能充400公里。

功率模块上,虽然硅也能做1000V以上的应用,但是SiC可以做到1700V,采用SiC后,功率模块的体积可以做得更小、功率密度更高。不过,目前750V的条件下,硅基IGBT应用的成本边际效应比SiC明显,但功率和电压变高后,1200V的SiC更具优势。

碳化硅与硅基IGBT应用成本对比:

逆变器角度说,碳化硅逆变器本身模块价格是硅基的2-3倍(英飞凌HPD 1000-1500元,碳化硅4500元)。

碳化硅应用后,系统成本更低(对于整车厂而言,应用碳化硅不会单一考虑功率器件成本,更重要的是考虑整车成本变化):

以80kWh电池为例,应用碳化硅后,NEDC续航里程可以提升4-5%(有的材料说能做到提升10%,但实际可能没有那么高),即节约电池4-5kWh(10%提升的话能节省8kWh)。近十几年来,电动车电池成本已经下降了80%,目前是130多美元1kWh(不到1000元)。运用碳化硅后,电池体积更小、重量更轻,预计电池端成本可以降3000-4000元;

冷却系统降1000元;

综合碳化硅应用成本上升以及其他系统成本变化,预计整车系统成本能够降低2000-3000元。

也就是说,未来高压平台采用SiC器件的数量将会更多,当然,这还需要看SiC的产能情况。

线缆、连接器和熔断器成本变化

在高压情况下,熔断丝和高压继电器的内部并没有本质的差异,400V和800V耐压值在工业应用中都属于低压用带你系统,原材料的变化不会很大。

在线缆方面,分为电源线和控制线。在电源线中,铜在电缆当中的成本比例以前在40%-50%,升级800V后,功率不变,电流将会降低一半,发热量只有原来的1/4。假设原来10块钱的线,铜占5块钱,现在铜占2.5元,原来绝缘占5元,现在占6元。整体来看线缆就变成8.5元,大概有15%的降幅。

控制线又分两种,一种叫高速控制线,比如通信线缆,与CPU和摄像头、自动驾驶相连,那种线价值量非常高,一根将近1000元。另一种是普通控制线,控制门窗、空调,此类控制线1米也就几毛钱。这个成本不好估算,一般业内的估计方法是看线缆的单价多少,大概估一下一个车用几百米。20万的汽油车,这种普通控制线大概2-3KM,一米几毛钱,总成本1000-2000元。

连接器会在接触电阻镀金或镀银,未来做成低接触电阻,产品做小,技术含量提高,整个里面的用材减少了,同时电流变小,散热需求小,不需要单独加冷却系统,价值量也会下降。假设原来100安培的连接器,原来400V现在800V,那么原来是400KW,现在是800KW,就不会把导体的用量减小,因为还是100安培。这部分的连接器一般来说成本会上升,会有20%-30%的上升。

另外,电容成本会上升,比如滤波电容基本0.5毫法、400V在300-400元,如果换成800V,价格可能上升到500多元。

审核编辑:彭静

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 电动车
    +关注

    关注

    73

    文章

    3112

    浏览量

    118073
  • cpu
    cpu
    +关注

    关注

    68

    文章

    11216

    浏览量

    222863
  • 电机
    +关注

    关注

    143

    文章

    9485

    浏览量

    153134

原文标题:​新能源汽车向800V高压平台转换对电子元器件产品的影响

文章出处:【微信号:elecfans,微信公众号:电子发烧友网】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    800V 电动汽车电机用绝缘膜材料要求 | 二维氮化硼热管理材料

    1.800V电动汽车电机绝缘膜材技术要求1.1电气性能要求800V电动汽车电机绝缘膜材的
    的头像 发表于 11-26 06:32 351次阅读
    <b class='flag-5'>800V</b> <b class='flag-5'>快</b>充<b class='flag-5'>电动</b>汽车电机用绝缘膜材料要求 | 二维氮化硼热管理材料

    苏州800V研讨会,技术+资源双收

    ——800V平台从中高端车型走向主流市场,碳化硅(SiC)、氮化镓(GaN)等三代半器件渗透率不断提升,6C及以上充电池逐步量产,800V生态正迎来规模化爆发的前夜。 然而,热潮
    的头像 发表于 10-29 10:46 246次阅读
    苏州<b class='flag-5'>800V</b>超<b class='flag-5'>充</b>研讨会,技术+资源双收

    惠海48V60V80V降3.3V5V9V12V电动车/摩托车整车芯片解决方案(下)

    除上篇《惠海48V60V80V降3.3V5V9V12V电动车/摩托车整车芯片解决方案(上)》文提及的产品外,近年来,惠海半导体在GPS定位器、手机
    的头像 发表于 10-09 10:13 200次阅读
    惠海48<b class='flag-5'>V60V80V</b>降3.3<b class='flag-5'>V5V9V12V</b><b class='flag-5'>电动车</b>/摩托车整车芯片解决方案(下)

    SL3160H 150V 电源芯片助力电动车 TBOX 实现高效可靠供电

    电瓶 TBOX(Telematics Box)是联网的核心组件,通过整合通信、定位、控制等功能模块,实现车辆与云端、用户之间的数据交互。 随着电动车智能化程度的不断提升,车载 T
    发表于 09-03 15:56

    霍尔IC在电动车调速转把中的应用与原理

    霍尔IC(霍尔效应集成电路)在电动车调速转把中的应用与原理可概括如下: 一、核心应用 ‌调速控制‌ 调速转把通过内置线性霍尔IC,将骑行者的旋转角度转化为连续电压信号。转把转动时,磁铁与霍尔IC
    发表于 08-07 10:46

    泰克EA直流可编程电源串联技术助力800V电动汽车高压架构加速落地

    泰克EA直流可编程电源串联技术助力800V电动汽车高压架构加速落地
    的头像 发表于 08-04 18:17 5091次阅读
    泰克EA直流可编程电源串联技术助力<b class='flag-5'>800V</b><b class='flag-5'>电动</b>汽车高压架构加速落地

    液冷超800V高压对决——2025连接器技术路线之争

    随着800V高压平台车型密集上市及超桩建设加速,新能源汽车技术步入“效率竞赛”新阶段。液冷超8
    的头像 发表于 07-30 10:21 1837次阅读
    液冷超<b class='flag-5'>充</b>与<b class='flag-5'>800V</b>高压对决——2025<b class='flag-5'>快</b><b class='flag-5'>充</b>连接器技术路线之争

    基于切换函数的电动车驱动滑模控制研究

    电动车的动作响应,抗扰能力强,转矩脉动小,降低了电动车驾驶噪音,增加了驾驶舒适度。起动过程节能,延长了电动车续使里程。滑模控制参数设计容易,适应性强,具有一定的理论意义和工程应用价
    发表于 07-29 16:18

    霍尔IC在电动车调速转把中的应用与原理

    本帖最后由 h1654155984.7392 于 2025-7-29 11:00 编辑 霍尔IC(霍尔效应集成电路)在电动车调速转把中的应用与原理可概括如下:一、核心应用‌调速控制‌调速转把
    发表于 07-29 10:57

    800V超充电流检测技术探讨——芯森(CHIPSENSE)电子HR1M H00电流传感器应用分析

    当一辆支持800V高压电动车接入800V超充电桩时,瞬间产生的冲击电流可能导致劣质传感器失效。充电枪过热熔毁、高压击穿起火……这些触目
    的头像 发表于 07-02 16:11 895次阅读
    <b class='flag-5'>800V</b>超充电流检测技术探讨——芯森(CHIPSENSE)电子HR1M H00电流传感器应用分析

    800V技术研讨会直击四大工程师核心议题

    《2024 新能源汽车消费洞察报告》指出,2024 年中国新能源(含乘用车与商用车)渗透率预计接近 40%,800V网络建设已从概念走向规模化落地的关键节点。 行业升级遇挑战:工程师亟需精准
    的头像 发表于 06-23 14:54 425次阅读

    一文讲解800V高压

    续航、充电一直是纯电动车型的两大痛点。近年来,随着主流电动车续航里程的显著提升,续航焦虑问题已得到有效缓解。然而,补能效率不足所带来的焦虑依然存在,成为制约电动车行业发展的主要瓶颈。为了解决充电慢
    的头像 发表于 05-19 14:09 1226次阅读
    一文讲解<b class='flag-5'>800V</b>高压<b class='flag-5'>快</b><b class='flag-5'>充</b>

    电动车正式迈入闪时代

    、1000A电流、1兆瓦充电功率与10C充电倍率构建的超级体系。这些数字不仅刷新行业认知,更标志着电动车正式迈入“闪时代”。
    的头像 发表于 05-14 10:07 1131次阅读

    恩智浦携手Wolfspeed打造的800V牵引逆变器参考设计

    为实现零排放的未来,汽车行业迫切需要重塑。汽车制造商必须加速推出差异化的电动车型。恩智浦携手Wolfspeed,共同推出一款经过全面验证的800V牵引逆变器参考设计,有效帮助电动汽车系统架构师克服诸多技术障碍。
    的头像 发表于 04-07 11:44 1476次阅读
    恩智浦携手Wolfspeed打造的<b class='flag-5'>800V</b>牵引逆变器参考设计

    800V低成本压缩机控制方案

    目前电动汽车正向智能化,高压化方向发展,前者在于提升汽车智能性,后者在于改善汽车充电时间等特性.为此,电动汽车正向高压800V平台过渡和演变,本文将简单介绍800V低成本压缩机控制方案
    的头像 发表于 03-20 09:44 1822次阅读
    <b class='flag-5'>800V</b>低成本压缩机控制方案