0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

如何使用Transformer来做物体检测?

中科院长春光机所 来源:AI公园 作者:Jacob Briones 2021-04-25 10:45 次阅读

导读

本文为一个Facebook的目标检测Transformer (DETR)的完整指南,详细介绍了DETR架构的内部工作方式以及代码。

介绍

DEtection TRansformer (DETR)是Facebook研究团队巧妙地利用了Transformer 架构开发的一个目标检测模型。在这篇文章中,我将通过分析DETR架构的内部工作方式来帮助提供一些关于它的含义。下面,我将解释一些结构,但是如果你只是想了解如何使用模型,可以直接跳到代码部分。

结构

DETR模型由一个预训练的CNN骨干(如ResNet)组成,它产生一组低维特征集。这些特征被格式化为一个特征集合并添加位置编码,输入一个由Transformer组成的编码器和解码器中,和原始的Transformer论文中描述的Encoder-Decoder的使用方式非常的类似。解码器的输出然后被送入固定数量的预测头,这些预测头由预定义数量的前馈网络组成。每个预测头的输出都包含一个类预测和一个预测框。损失是通过计算二分匹配损失来计算的。

de1e84951e16f003cad41eb9d065b884.png

该模型做出了预定义数量的预测,并且每个预测都是并行计算的。

CNN主干

假设我们的输入图像,有三个输入通道。CNN backbone由一个(预训练过的)CNN(通常是ResNet)组成,我们用它来生成_C_个具有宽度W和高度H的低维特征(在实践中,我们设置_C_=2048, W=W₀/32和H=H₀/32)。这留给我们的是C个二维特征,由于我们将把这些特征传递给一个transformer,每个特征必须允许编码器将每个特征处理为一个序列的方式重新格式化。这是通过将特征矩阵扁平化为H⋅W向量,然后将每个向量连接起来来实现的。

287bf2488bbde18c1bec3c4f78fd9329.png

扁平化的卷积特征再加上空间位置编码,位置编码既可以学习,也可以预定义。

The Transformer

Transformer几乎与原始的编码器-解码器架构完全相同。不同之处在于,每个解码器层并行解码N个(预定义的数目)目标。该模型还学习了一组N个目标的查询,这些查询是(类似于编码器)学习出来的位置编码。

cfa6d245dd8b156b006edab65640f0a8.png

目标查询

下图描述了N=20个学习出来的目标查询(称为prediction slots)如何聚焦于一张图像的不同区域。

964d2f602f92857bcc5274b7d0774bf1.png

“我们观察到,在不同的操作模式下,每个slot 都会学习特定的区域和框大小。“ —— DETR的作者

理解目标查询的直观方法是想象每个目标查询都是一个人。每个人都可以通过注意力来查看图像的某个区域。一个目标查询总是会问图像中心是什么,另一个总是会问左下角是什么,以此类推。

使用PyTorch实现简单的DETR

import torchimport torch.nn as nnfrom torchvision.models import resnet50class SimpleDETR(nn.Module):“”“Minimal Example of the Detection Transformer model with learned positional embedding”“” def __init__(self, num_classes, hidden_dim, num_heads, num_enc_layers, num_dec_layers): super(SimpleDETR, self).__init__() self.num_classes = num_classes self.hidden_dim = hidden_dim self.num_heads = num_heads self.num_enc_layers = num_enc_layers self.num_dec_layers = num_dec_layers # CNN Backbone self.backbone = nn.Sequential( *list(resnet50(pretrained=True).children())[:-2]) self.conv = nn.Conv2d(2048, hidden_dim, 1) # Transformer self.transformer = nn.Transformer(hidden_dim, num_heads, num_enc_layers, num_dec_layers) # Prediction Heads self.to_classes = nn.Linear(hidden_dim, num_classes+1) self.to_bbox = nn.Linear(hidden_dim, 4) # Positional Encodings self.object_query = nn.Parameter(torch.rand(100, hidden_dim)) self.row_embed = nn.Parameter(torch.rand(50, hidden_dim // 2) self.col_embed = nn.Parameter(torch.rand(50, hidden_dim // 2)) def forward(self, X): X = self.backbone(X) h = self.conv(X) H, W = h.shape[-2:] pos_enc = torch.cat([ self.col_embed[:W].unsqueeze(0).repeat(H,1,1), self.row_embed[:H].unsqueeze(1).repeat(1,W,1)], dim=-1).flatten(0,1).unsqueeze(1) h = self.transformer(pos_enc + h.flatten(2).permute(2,0,1), self.object_query.unsqueeze(1)) class_pred = self.to_classes(h) bbox_pred = self.to_bbox(h).sigmoid() return class_pred, bbox_pred

二分匹配损失 (Optional)

让为预测的集合,其中是包括了预测类别(可以是空类别)和包围框的二元组,其中上划线表示框的中心点, 和表示框的宽和高。设y为ground truth集合。假设y和_ŷ_之间的损失为L,每一个yᵢ和_ŷ_ᵢ之间的损失为Lᵢ。由于我们是在集合的层次上工作,损失L必须是排列不变的,这意味着无论我们如何排序预测,我们都将得到相同的损失。因此,我们想找到一个排列,它将预测的索引映射到ground truth目标的索引上。在数学上,我们求解:

86dc5236fcca1b7bd7080630260c36d6.png

计算的过程称为寻找最优的二元匹配。这可以用匈牙利算法找到。但为了找到最优匹配,我们需要实际定义一个损失函数,计算和之间的匹配成本。

回想一下,我们的预测包含一个边界框和一个类。现在让我们假设类预测实际上是一个类集合上的概率分布。那么第_i_个预测的总损失将是类预测产生的损失和边界框预测产生的损失之和。作者在http://arxiv.org/abs/1906.05909中将这种损失定义为边界框损失和类预测概率的差异:

992dad5a7a1dc3075cbcd33f150d10f7.png

其中,是的argmax,是是来自包围框的预测的损失,如果,则表示匹配损失为0。

框损失的计算为预测值与ground truth的L₁损失和的GIOU损失的线性组合。同样,如果你想象两个不相交的框,那么框的错误将不会提供任何有意义的上下文(我们可以从下面的框损失的定义中看到)。

183c84881c17d3e38dced802e8291566.png

其中,λᵢₒᵤ和是超参数。注意,这个和也是面积和距离产生的误差的组合。为什么会这样呢?

可以把上面的等式看作是与预测相关联的总损失,其中面积误差的重要性是λᵢₒᵤ,距离误差的重要性是。现在我们来定义GIOU损失函数。定义如下:

1d3224e47d3956fe8afbefa144918b38.png

由于我们从已知的已知类的数目来预测类,那么类预测就是一个分类问题,因此我们可以使用交叉熵损失来计算类预测误差。我们将损失函数定义为每N个预测损失的总和:

0b00557f7e5daf116fe7264009ad9421.png

为目标检测使用DETR

在这里,你可以学习如何加载预训练的DETR模型,以便使用PyTorch进行目标检测。

加载模型

首先导入需要的模块。

# Import required modulesimport torchfrom torchvision import transforms as T import requests # for loading images from webfrom PIL import Image # for viewing imagesimport matplotlib.pyplot as plt

下面的代码用ResNet50作为CNN骨干从torch hub加载预训练的模型。其他主干请参见DETR github:https://github.com/facebookresearch/detr

detr = torch.hub.load(‘facebookresearch/detr’, ‘detr_resnet50’, pretrained=True)

加载一张图像

要从web加载图像,我们使用requests库:

url = ‘https://www.tempetourism.com/wp-content/uploads/Postino-Downtown-Tempe-2.jpg’ # Sample imageimage = Image.open(requests.get(url, stream=True).raw) plt.imshow(image)plt.show()

设置目标检测的Pipeline

为了将图像输入到模型中,我们需要将PIL图像转换为张量,这是通过使用torchvision的transforms库来完成的。

transform = T.Compose([T.Resize(800), T.ToTensor(), T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])

上面的变换调整了图像的大小,将PIL图像进行转换,并用均值-标准差对图像进行归一化。其中[0.485,0.456,0.406]为各颜色通道的均值,[0.229,0.224,0.225]为各颜色通道的标准差。我们装载的模型是预先在COCO Dataset上训练的,有91个类,还有一个表示空类(没有目标)的附加类。我们用下面的代码手动定义每个标签

CLASSES = [‘N/A’, ‘Person’, ‘Bicycle’, ‘Car’, ‘Motorcycle’, ‘Airplane’, ‘Bus’, ‘Train’, ‘Truck’, ‘Boat’, ‘Traffic-Light’, ‘Fire-Hydrant’, ‘N/A’, ‘Stop-Sign’, ‘Parking Meter’, ‘Bench’, ‘Bird’, ‘Cat’, ‘Dog’, ‘Horse’, ‘Sheep’, ‘Cow’, ‘Elephant’, ‘Bear’, ‘Zebra’, ‘Giraffe’, ‘N/A’, ‘Backpack’, ‘Umbrella’, ‘N/A’, ‘N/A’, ‘Handbag’, ‘Tie’, ‘Suitcase’, ‘Frisbee’, ‘Skis’, ‘Snowboard’, ‘Sports-Ball’, ‘Kite’, ‘Baseball Bat’, ‘Baseball Glove’, ‘Skateboard’, ‘Surfboard’, ‘Tennis Racket’, ‘Bottle’, ‘N/A’, ‘Wine Glass’, ‘Cup’, ‘Fork’, ‘Knife’, ‘Spoon’, ‘Bowl’, ‘Banana’, ‘Apple’, ‘Sandwich’, ‘Orange’, ‘Broccoli’, ‘Carrot’, ‘Hot-Dog’, ‘Pizza’, ‘Donut’, ‘Cake’, ‘Chair’, ‘Couch’, ‘Potted Plant’, ‘Bed’, ‘N/A’, ‘Dining Table’, ‘N/A’,‘N/A’, ‘Toilet’, ‘N/A’, ‘TV’, ‘Laptop’, ‘Mouse’, ‘Remote’, ‘Keyboard’, ‘Cell-Phone’, ‘Microwave’, ‘Oven’, ‘Toaster’, ‘Sink’, ‘Refrigerator’, ‘N/A’, ‘Book’, ‘Clock’, ‘Vase’, ‘Scissors’, ‘Teddy-Bear’, ‘Hair-Dryer’, ‘Toothbrush’]

如果我们想输出不同颜色的边框,我们可以手动定义我们想要的RGB格式的颜色

COLORS = [ [0.000, 0.447, 0.741], [0.850, 0.325, 0.098], [0.929, 0.694, 0.125], [0.494, 0.184, 0.556], [0.466, 0.674, 0.188], [0.301, 0.745, 0.933] ]

格式化输出

我们还需要重新格式化模型的输出。给定一个转换后的图像,模型将输出一个字典,包含100个预测类的概率和100个预测边框。每个包围框的形式为(x, y, w, h),其中(x,y)为包围框的中心(包围框是单位正方形[0,1]×[0,1]), w, h为包围框的宽度和高度。因此,我们需要将边界框输出转换为初始和最终坐标,并重新缩放框以适应图像的实际大小。下面的函数返回边界框端点:

# Get coordinates (x0, y0, x1, y0) from model output (x, y, w, h)def get_box_coords(boxes): x, y, w, h = boxes.unbind(1) x0, y0 = (x - 0.5 * w), (y - 0.5 * h) x1, y1 = (x + 0.5 * w), (y + 0.5 * h) box = [x0, y0, x1, y1] return torch.stack(box, dim=1)

我们还需要缩放了框的大小。下面的函数为我们做了这些:

# Scale box from [0,1]x[0,1] to [0, width]x[0, height]def scale_boxes(output_box, width, height): box_coords = get_box_coords(output_box) scale_tensor = torch.Tensor( [width, height, width, height]).to( torch.cuda.current_device()) return box_coords * scale_tensor

现在我们需要一个函数来封装我们的目标检测pipeline。下面的detect函数为我们完成了这项工作。

# Object Detection Pipelinedef detect(im, model, transform): device = torch.cuda.current_device() width = im.size[0] height = im.size[1] # mean-std normalize the input image (batch-size: 1) img = transform(im).unsqueeze(0) img = img.to(device) # demo model only support by default images with aspect ratio between 0.5 and 2 assert img.shape[-2] 《= 1600 and img.shape[-1] 《= 1600, # propagate through the model outputs = model(img) # keep only predictions with 0.7+ confidence probas = outputs[‘pred_logits’].softmax(-1)[0, :, :-1] keep = probas.max(-1).values 》 0.85 # convert boxes from [0; 1] to image scales bboxes_scaled = scale_boxes(outputs[‘pred_boxes’][0, keep], width, height) return probas[keep], bboxes_scaled

现在,我们需要做的是运行以下程序来获得我们想要的输出:

probs, bboxes = detect(image, detr, transform)

绘制结果

现在我们有了检测到的目标,我们可以使用一个简单的函数来可视化它们。

# Plot Predicted Bounding Boxesdef plot_results(pil_img, prob, boxes,labels=True): plt.figure(figsize=(16,10)) plt.imshow(pil_img) ax = plt.gca() for prob, (x0, y0, x1, y1), color in zip(prob, boxes.tolist(), COLORS * 100): ax.add_patch(plt.Rectangle((x0, y0), x1 - x0, y1 - y0, fill=False, color=color, linewidth=2)) cl = prob.argmax() text = f‘{CLASSES[cl]}: {prob[cl]:0.2f}’ if labels: ax.text(x0, y0, text, fontsize=15, bbox=dict(facecolor=color, alpha=0.75)) plt.axis(‘off’) plt.show()

现在可以可视化结果:

plot_results(image, probs, bboxes, labels=True)

英文原文:https://medium.com/swlh/object-detection-with-transformers-437217a3d62e

编辑:jq

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 函数
    +关注

    关注

    3

    文章

    4189

    浏览量

    61630
  • 代码
    +关注

    关注

    30

    文章

    4618

    浏览量

    67474
  • cnn
    cnn
    +关注

    关注

    3

    文章

    349

    浏览量

    21711
  • pytorch
    +关注

    关注

    2

    文章

    787

    浏览量

    12922

原文标题:实操教程|如何使用Transformer来做物体检测?DETR模型完整指南

文章出处:【微信号:cas-ciomp,微信公众号:中科院长春光机所】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    低功耗蓝牙模块+气体检测仪蓝牙方案介绍

    在工业安全领域,气体检测仪是保障工作场所安全的关键设备之一。气体检测仪蓝牙模组方案的出现,使得气体检测数据可以通过蓝牙技术传输到智能手机、平板电脑等移动设备上,实现远程监测与管理。工作人员无需
    的头像 发表于 07-17 16:59 76次阅读
    低功耗蓝牙模块+气<b class='flag-5'>体检测</b>仪蓝牙方案介绍

    我国气体检测仪发展现状

    什么是气体检测仪?气体检测仪是一种气体泄露浓度检测的仪器仪表工具,气体检测仪器仪表通过将气体传感器采集的物理或者化学非电信号转化为电信号,再通过外部电路对以上电信号整流、滤波等处理,并
    的头像 发表于 03-27 10:25 447次阅读
    我国气<b class='flag-5'>体检测</b>仪发展现状

    我国气体检测仪发展现状

    什么是气体检测仪? 气体检测仪是一种气体泄露浓度检测的仪器仪表工具,气体检测仪器仪表通过将气体传感器采集的物理或者化学非电信号转化为电信号,再通过外部电路对以上电信号整流、滤波等处理,
    的头像 发表于 03-19 19:25 260次阅读

    红外气体检测仪的工作原理 红外气体检测仪的使用方法

    红外气体检测仪是一种常用的气体检测装置,通过测量目标气体在红外光谱范围内的吸收特性实现气体的检测。红外气体检测仪具有高精度、快速响应、稳定
    的头像 发表于 02-01 16:52 1018次阅读

    体检测仪手持终端定制_便携式多种气体检测

    体检测仪手持终端定制_便携式多种气体检测仪|气体检测仪方案。手持气体检测仪终端在工业施工等领域具有重要的作用。该仪器可以有效地检测到可燃气
    的头像 发表于 01-23 19:44 668次阅读
    气<b class='flag-5'>体检测</b>仪手持终端定制_便携式多种气<b class='flag-5'>体检测</b>仪

    实现稳定物体检测所需的光电传感器选择方法和使用方法

    使用反射型传感器时,应用上的各种要素将会影响光电传感器的物体检测。尤其对于黑色物体、光泽物体及透明物体等,使用传统光电传感器难以实现稳定的检测
    的头像 发表于 01-13 08:23 453次阅读
    实现稳定<b class='flag-5'>物体检测</b>所需的光电传感器选择方法和使用方法

    ADXL362自由落体检测异常,结果与阈值设定不符是怎么回事?

    我在用ADXL362 自由落体检测触发ADXL372的测量流程; 用ADI的网站上的代码资源写了驱动,ID读写、测量模式开关、温度读写、XYZ轴值的读写、静止运动链接检测模式均没
    发表于 12-29 08:23

    基于transformer和自监督学习的路面异常检测方法分享

    铺设异常检测可以帮助减少数据存储、传输、标记和处理的压力。本论文描述了一种基于Transformer和自监督学习的新方法,有助于定位异常区域。
    的头像 发表于 12-06 14:57 977次阅读
    基于<b class='flag-5'>transformer</b>和自监督学习的路面异常<b class='flag-5'>检测</b>方法分享

    怎么通过OPENMV识别物体的颜色?

    怎么通过OPENMV识别物体的颜色
    发表于 10-12 08:05

    医疗应用中液体检测解决方案

    体检测在许多不同的医疗应用(例如输液泵和 CPAP 呼吸机)中都非常有用,在这些应用中,监测分配的流体或液体位置不仅对系统的运行至关重要,而且对患者的健康也至关重要。有各种位置检测技术可供使用
    的头像 发表于 09-05 11:17 610次阅读
    医疗应用中液<b class='flag-5'>体检测</b>解决方案

    隧道气体检测系统:我们真的需要它吗?

    随着城市化进程的加快,隧道的建设和使用越来越频繁。但是,你是否知道这些封闭的空间可能会积聚有害气体?这就是为什么我们需要隧道气体检测系统的原因。但是,我们真的需要这样的系统吗?本文将探讨这个
    的头像 发表于 08-18 11:17 475次阅读

    基于Transformer的目标检测算法

    掌握基于Transformer的目标检测算法的思路和创新点,一些Transformer论文涉及的新概念比较多,话术没有那么通俗易懂,读完论文仍然不理解算法的细节部分。
    发表于 08-16 10:51 523次阅读
    基于<b class='flag-5'>Transformer</b>的目标<b class='flag-5'>检测</b>算法

    车载气体检测保护器件和方案

    雷卯推荐车载气体检测保护器件和方案
    的头像 发表于 08-15 12:48 578次阅读
    车载气<b class='flag-5'>体检测</b>保护器件和方案

    乙炔气体检测仪的特点和应用领域

    乙炔气体在工业生产过程中具有广泛的应用,但其易燃易爆特性也给生产安全带来隐患。深圳乙炔气体检测仪作为一种关键的安全设备,通过实时检测乙炔气体浓度,为工业生产提供安全保障。本文将介绍深圳乙炔气体检测
    的头像 发表于 08-07 15:13 428次阅读

    宝安气体检测仪厂家:气体检测仪生产中心

    深圳宝安区,作为中国的重要电子制造业基地,拥有众多生产各种高科技设备的制造商,其中就包括气体检测仪的生产厂家。这些厂家凭借先进的生产设备、严谨的生产工艺和高素质的研发团队,生产出的气体检测仪广受全球
    的头像 发表于 07-28 16:23 489次阅读