0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

使用新型纳米碳电极或是缩短电动汽车充电时间的关键

SAE International 来源:SAE《汽车工程》杂志 作者:SAE《汽车工程》杂 2021-04-25 08:57 次阅读

使用新型纳米碳电极或是缩短电动汽车充电时间的关键。

NAWA 认为,公司的纳米结构电极将为电动汽车电池带来阶跃性进展。(图片来源:NAWA)

最近,法国纳米材料初创公司 NAWA Technologies 声称已经开发出一种技术,可以显着提高电动汽车电池的储能效率。根据公司创始人兼首席技术官 Pascal Boulanger 的说法,NAWA 的 UFCE 超快充碳电极可以将电动汽车电池的充电时间缩短至与汽油汽车加油差不多的水平,并同时将电池寿命最高提升 5 倍。

在接受 SAE International 采访时,Pascal Boulanger 表示,UFCE 电极技术可以将市面上主流电动汽车的续航里程增加至 1,000 公里(620 英里),并实现 5 分钟内充电80% 的超高速充电。他指出,“UFCE 电极的独特之处在于采用了 3D 结构的 VACNT 垂直对齐碳纳米管。

每个碳纳米管实质上都是一个卷成圆柱型的石墨烯片。这些纳米管的直径相较于其长度而言非常细,其比例相当于一根长约 1 公里的意大利面。而 UFCE 电极正是由数百万亿根这样的碳纳米管组成的!”Boulanger 表示,UFCE 电极适用于各类先进电池化学技术。

实现“最高”离子电导率 Boulanger 解释说,目前锂基电池的性能主要受电极设计和电池材料的限制。目前,粉末电极的导电性和导热性均较差,充放电间的力学性能也不高,并且可能面临安全和使用寿命有限等问题。

Boulanger 表示,当下电极材料的微结构决定了其中的离子难以四处自由移动,因此电导率较低。UFCE 电极采用的专利 VACNT 碳纳米管,凭借 3D 结构可以取得“最高”的离子电导率,而且又借助纳米管的超长长度同时获得非常好的导电性和导热性。Boulanger 说,这些特性可以解决电池热失控的问题。

从力学上看,VACNT 纳米管可以像“笼子”可以减少电极的体积膨胀,从而使其能够在比粉末电极更小的“应力”下工作:“简单地说,这意味着离子仅需移动几纳米即可穿过圆柱形的立体电极材料,但如果电极材料是平面的,则离子则可能需要移动几微米。”Boulanger 表示,新结构“从根本上提高了电池的充电和放电速率”。

此前,NAWA公司还曾发布过“下一代超级电容器”(名为超快充碳电池)产品。公司称,这款超级电容器拥有超高的充放电速度,且取得了“市面上最低的电气串联电阻值。” Boulanger 表示,NAWA 的电极技术可以帮助锂基电池实现性能优化:电池功率提高 10 倍、能量存储最高提升 3 倍、电池寿命周期最高提升 5 倍,而且充电时间从几小时缩短到仅几分钟。

“通常情况下,任何技术都有优劣势,因此总要有所取舍,比如粉末电极的情况就是这样。”Boulanger指出,“你要增加能量存储,就要降低功率;汽车要跑得更快,就要更多消耗电池。不过,还有一些电池技术绝对是被低估了。” 目前,大多数电动车车主已经发现,电动汽车开的时间越长,车辆的电池就越不经用。

与汽油发动机不同,电动汽车的电池损耗不是线性下降的。Boulanger 说,“我们的技术也是如此 – 然而,由于我们的功率和储能水平都更高,这意味着您将获得更多富余,因此无论电量如何,电池‘过度放电’的情况都将很少发生。”NAWA 公司研发合作伙伴(包括法国电池巨头 SAFT)的初步结果表明,先进锂离子电池使用 UFCE 电极可以将储能量最少增加一倍。Boulanger 说,“因此,电动汽车将拥有更多能量,可以跑得更快,同时也跑得更远。”

3D 垂直结构的电动汽车电池电极。(图片来源:NAWA)

碳纳米材料的协同效应

Boulanger 说,NAWA 公司的 3D 碳纳米材料电极经过专门设计,非常易于制造。VACNT 碳纳米管的制造工艺与光伏板或工业玻璃生产“非常相似”。Boulanger 声称,碳纳米管的生产“并不昂贵”:生产设备已过验证,产量和良率均大大提高,成本可以控制得很低。

Boulanger 说,“我们预测,生产一平方米碳纳米管的成本与生产同等面积的涂层应该差不多,但所需的天然材料和可持续碳源材料更少。不过,单位平方米碳纳米管可以存储的能量更多,因此如果按照单位瓦时成本来说,碳纳米管应该更便宜。”

Boulanger 也意识到 UFCE 电极的商业化可能面临一些障碍。“我们有很多种方式可以将 3D 电极概念推入市场,”他说。最简单的方法是在铜基板上刷一层非常薄的 VACNT 碳纳米管,从而与目前已经在电池行业投用的碳涂层铜基板竞争。Boulanger说,通过这种方法生产的电极材料具有更好的电性能和锚固性,并且已经可以在 2021 年实现小批量生产。

从长远来看,真正的 3D 结构 UFCE 电极“可能会在 2023 年初小批量上市,并在 2025 年实现量产。” NAWA 公司的 UFCE 电极也有潜力应用至氢燃料电池系统,可以使用 NAWA 公司的 NAWACap 超级电容器回收本来会被浪费掉的能量。Boulanger 表示,UFCE 电极也可以作为燃料电池的膜电极。

“事实证明,NACNT 使用的贵金属铂更少”,因此可以节省成本。此外,NAWA 集团另一个事业部还在开发各种创新材料,使用这些材料制作的氢碳复合储罐的重量更轻、强度更高。 NAWA美国公司位于美国俄亥俄州 Dayton 市,专注于多功能超强复合材料的商业化。公司的 NAWAStitch 概念采用了一层内含数万亿个与碳纤维层垂直排列的 VACNT 碳纳米管薄膜。

Boulanger 表示,这层薄膜就像是一个“纳米尼龙搭扣”,可以增强复合材料中连接最薄弱的环节,即层与层之间的接触面,因此可以大大提高材料抵抗剪切和冲击载荷的能力。 除了 3D-UFCE 和 NAWAStitch,NAWA 公司还有另外一项创新:NAWAShell。这是一种采用 VACNT 碳纳米管的混合结构电池。由于采用了复合结构,这种电池的力学强度和电能存储性能均得到优化。

Boulanger 认为,未来“NAWAStitch 和 NAWAShell 的结合使用将发挥巨大潜力,创造可以储存能量的多功能轻质坚固材料,比如可以使用这种材料制造车辆的太阳能板车顶,帮助车辆储存更多能量,而且几乎不会增加车辆重量。”

编辑:jq

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 电动汽车
    +关注

    关注

    155

    文章

    11173

    浏览量

    223091
  • 锂离子电池
    +关注

    关注

    85

    文章

    3091

    浏览量

    76501
  • 电容器
    +关注

    关注

    63

    文章

    5815

    浏览量

    96789
  • 电极
    +关注

    关注

    5

    文章

    742

    浏览量

    26875

原文标题:充电5分钟,续航800公里,或将在2025年实现,使用新型纳米碳电极或是缩短电动汽车充电时间的关键

文章出处:【微信号:SAEINTL,微信公众号:SAE International】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    影响电动汽车交流慢充时间的因素有哪些?

    影响电动汽车交流慢充时间的因素有哪些? 电动汽车的慢充时间受到多个因素的影响。下面将详细介绍这些因素,并解释它们是如何影响慢充时间的。 首先
    的头像 发表于 04-08 16:13 464次阅读

    浅谈云计算平台的电动汽车充电桩设计与实现

    电动汽车充电站和充电桩等与新能源汽车相关的配套充电设施,预示着电动汽车进入普及阶段。这种全新的设
    的头像 发表于 02-26 10:55 137次阅读
    浅谈云计算平台的<b class='flag-5'>电动汽车</b><b class='flag-5'>充电</b>桩设计与实现

    什么是调功器?调功器在电动汽车充电设备中的应用

    什么是调功器?调功器在电动汽车充电设备中的应用  调功器是一种调节电能流动的装置,它在电动汽车充电设备中起到关键作用。调功器通过控制电流和电
    的头像 发表于 02-03 09:57 2540次阅读

    电动汽车充电桩产业链及市场竞争格局

    电动汽车充电桩(Electric Vehicle Charging Station,EV充电桩)是一种用于给电动汽车充电的设备。
    发表于 12-12 14:12 499次阅读
    <b class='flag-5'>电动汽车</b><b class='flag-5'>充电</b>桩产业链及市场竞争格局

    基于南方某市的电动汽车充电数据分析电动汽车充电负荷预测

    1影响电动汽车充电负荷特性的因素充电 开始时间充电持续时间
    的头像 发表于 10-31 11:26 667次阅读
    基于南方某市的<b class='flag-5'>电动汽车</b><b class='flag-5'>充电</b>数据分析<b class='flag-5'>电动汽车</b><b class='flag-5'>充电</b>负荷预测

    Molex解决电动汽车充电关键设计难题

    %。 但这些预测都面临着一些残酷的现实。 例如,行驶里程限制、充电时间过长和缺乏公共充电桩,这些不利因素让许多潜在的电动汽车消费者犹豫观望。 好消息是,政府建设
    的头像 发表于 09-22 14:10 3005次阅读
    Molex解决<b class='flag-5'>电动汽车</b><b class='flag-5'>充电</b>的<b class='flag-5'>关键</b>设计难题

    基于stm32的电动汽车交流充电桩设计与实现

    要推动电动汽车的产业化,与之配套的电动汽车充电设施必不可少。本课题提出了一种基于STM32处理器STM32F103ZET6的电动汽车交流充电
    发表于 09-21 07:58

    电动汽车充电速度评估方法和测试对象

    电动汽车充电功率这个参数本身既不可靠也不代表实际的充电性能。用于评估纯电动汽车关键参数是充电
    发表于 09-07 09:28 383次阅读
    <b class='flag-5'>电动汽车</b><b class='flag-5'>充电</b>速度评估方法和测试对象

    电动汽车无序充电对电网的影响

    影响电动汽车充电的因素。电动汽车不同于其他负荷,其具有随机性,因此需要充分考虑影响其变化的因素,并建立理想的负荷概率模型,才可以更真实的模拟电动汽车无序
    发表于 08-22 10:48 741次阅读
    <b class='flag-5'>电动汽车</b>无序<b class='flag-5'>充电</b>对电网的影响

    创新充电桩设计:解决电动汽车充电难题

    通过优化充电速度、提高充电桩的普及率和实现无线充电等技术,我们可以为电动汽车用户提供更加便捷、高效的充电体验,推动
    的头像 发表于 08-15 14:49 538次阅读

    电动汽车充电策略

    电动汽车充电:一种就是常规的充电方式。这种充电方式是采用恒压、恒流的传统充电方式对电动汽车进行
    的头像 发表于 08-08 16:53 1282次阅读
    纯<b class='flag-5'>电动汽车</b>的<b class='flag-5'>充电</b>策略

    怎么使用Simcenter Amesim来评估燃料电池电动汽车的补氢时间呢?

    电池电动汽车(BEV)的主要限制之一,尤其是那些使用大型电池组达到可观续航里程的电动汽车,是给电池补充电量的时间
    发表于 08-03 11:44 733次阅读
    怎么使用Simcenter Amesim来评估燃料电池<b class='flag-5'>电动汽车</b>的补氢<b class='flag-5'>时间</b>呢?

    电动汽车充电桩监控平台系统的设计与应用

    针对当前电动汽车电池寿命严重不足、无法及时充电的问题,将电动电子变流技术、智能监控技术、REIP无线射频技术和CAN总线技术应用于电动汽车智能充电
    的头像 发表于 07-06 17:31 585次阅读

    电动汽车充电桩的安装条件

    电动汽车充电桩(Electric Vehicle Charging Station),也被称为电动汽车充电设施或电动汽车
    发表于 07-05 11:47 1098次阅读

    电动汽车充电桩的组成部分

    电动汽车充电桩(Electric Vehicle Charging Station),也被称为电动汽车充电设施或电动汽车
    的头像 发表于 06-28 16:58 2547次阅读