0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

三种常用的加速晶体管开关的方法

h1654155282.3538 来源:搬砖者说 作者:搬砖者说 2021-02-18 14:51 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

1、使用加速电容

o4YBAGAuDqKAbIC1AACJu6aHpXI922.png

图 3 使用加速电容时的电路

o4YBAGAuDqqAHq21AABd1D9dccs574.png

图 4 加速电容对基极电压的影响

图 3 是对图 1 基极限流电阻 R1 添加并联小容量电容器的电路。这样,当输入信号上升、下降时能够使 R1 电阻瞬间被旁路并提供基极电流,所以在晶体管由导通状态变化到截止状态时能够迅速从基区取出电子(因为R1 被旁路),消除开关的时间滞后。这个电容的作用是提高了开关速度,所以称为加速电容。

pIYBAGAuDrKAODz_AACERaXlEHE727.png

图 5 加了加速电容的输入输出波形

图片 5 是添加了加速电容之后的输入输出波形图,可以看出晶体管开关速度明显提升,边沿变得陡峭,由于所使用的晶体管以及基极电流、集电极电流值等原因,加速电容的最佳值是各不相同的。因此,加速电容的值要通过实际电路的开关波形决定。

2、肖特基钳位

提高晶体管开关速度的另一个方法是利用肖特基二极管钳位。这种方法是 74LS、74ALS、74AS 等典型的数字IC TTL的内部电路所采用的技术。

图 6 是对图 1 添加肖特基钳位的电路。所谓的肖特基钳位是在基极与集电极之间接入肖特基二极管。这种二极管不是 PN 结,而是由金属与半导体接触形成具有整流作用的二极管,其特点是开关速度快,正向压降 VF比硅 PN 结小。

o4YBAGAuDrqAFLUbAABas01CPHI139.png

图 6 进行肖特基钳位的电路

o4YBAGAuDsOAGthjAAARi5mPY54130.png

图 7 加了肖特基钳位的输入输出波形

如上图 7 是加入了肖特基钳位的输入输出波形,可以看出其效果与接入加速电容(图 5)时相同,晶体管开通关断边沿明显变陡峭。

分析图 6 可知,肖特基二极管的正向电压降 VF 比晶体管的 VBE 小,所以本来应该流过晶体管的大部分基极电流现在通过 D1 被旁路掉了。这时流过晶体管的基极电流非常小,所以可以认为这时晶体管的导通状态接近截止状态。

3、减小基基电阻R1

o4YBAGAuDsuAT5kgAABEDd4At_k973.png

图 8 R1=100Ω时的电路

pIYBAGAuDtKAN107AAARCW3AT0w970.png

图 9 R1=100Ω时的输入输出波形

如上图 9 所示,减小 R1 电阻至 R1=100Ω 时的输入输出波形较图 2 明显变陡峭,这是因为 R1 减小时,其与晶体管密勒效应构成的低通滤波器的截止频率升高,所以输出波形的上升速度加快了。

加速电容是一种与减小基基电阻值等效的提高开关速度的方法。肖特基钳位可以看做是改变晶体管的工作点,减小电荷存储效应影响,提高开关速度的方法。由于肖特基钳位电路不像接入加速电容那样会降低电路的输入阻抗,所以当驱动开关电路的前级电路的驱动能力较低时,采用这种方法很有效。

在设计这种电路时要注意肖特基二极管的反向电压VR的最大额定值(因为晶体管截止时电源电压会原封不动的加在肖特基二极管上)。
责任编辑人:CC

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 晶体管
    +关注

    关注

    78

    文章

    10250

    浏览量

    146271
  • 晶体管开关电路

    关注

    0

    文章

    2

    浏览量

    1023
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    电压选择晶体管应用电路第二期

    电压选择晶体管应用电路第二期 以前发表过关于电压选择晶体管的结构和原理的文章,这一期我将介绍一下电压选择晶体管的用法。如图所示: 当输入电压Vin等于电压选择晶体管QS的栅极控制电压时
    发表于 11-17 07:42

    晶体管的定义,晶体管测量参数和参数测量仪器

    晶体管是一以半导体材料为基础的电子元件,具有检波、整流、放大、开关、稳压和信号调制等多种功能‌。其核心是通过控制输入电流或电压来调节输出电流,实现信号放大或电路开关功能‌。 基本定义
    的头像 发表于 10-24 12:20 245次阅读
    <b class='flag-5'>晶体管</b>的定义,<b class='flag-5'>晶体管</b>测量参数和参数测量仪器

    英飞凌功率晶体管的短路耐受性测试

    本文将深入探讨两备受瞩目的功率晶体管——英飞凌的 CoolGaN(氮化镓高电子迁移率晶体管)和 OptiMOS 6(硅基场效应晶体管),在极端短路条件下的表现。通过一系列严谨的测试,
    的头像 发表于 10-07 11:55 2894次阅读
    英飞凌功率<b class='flag-5'>晶体管</b>的短路耐受性测试

    多值电场型电压选择晶体管结构

    多值电场型电压选择晶体管结构 为满足多进制逻辑运算的需要,设计了一款多值电场型电压选择晶体管。控制二进制电路通断需要二进制逻辑门电路,实际上是对电压的一选择,而传统二进制逻辑门电路通常比较复杂
    发表于 09-15 15:31

    晶体管光耦的工作原理

    晶体管光耦(PhotoTransistorCoupler)是一将发光器件和光敏器件组合在一起的半导体器件,用于实现电路之间的电气隔离,同时传递信号或功率。晶体管光耦的工作原理基于光电效应和半导体
    的头像 发表于 06-20 15:15 632次阅读
    <b class='flag-5'>晶体管</b>光耦的工作原理

    下一代高速芯片晶体管解制造问题解决了!

    心存疑虑,根据imec在2025年VSLI研讨会上的最新声明,这家研究巨头开发了一全新的尖端叉片晶体管设计方法,解决了制造难题,这将推动晶体管的未来持续发展。 叉片
    发表于 06-20 10:40

    什么是晶体管?你了解多少?知道怎样工作的吗?

    晶体管(Transistor)是一‌半导体器件‌,用于‌放大电信号‌、‌控制电流‌或作为‌电子开关‌。它是现代电子技术的核心元件,几乎所有电子设备(从手机到超级计算机)都依赖晶体管
    的头像 发表于 05-16 10:02 3398次阅读

    多值电场型电压选择晶体管结构

    多值电场型电压选择晶体管结构 为满足多进制逻辑运算的需要,设计了一款多值电场型电压选择晶体管。控制二进制电路通断需要二进制逻辑门电路,实际上是对电压的一选择,而传统二进制逻辑门电路通常比较复杂
    发表于 04-15 10:24

    晶体管电路设计(下)

    开关电路的设计,FET开关电路的设计,功率MOS电动机驱动电路,功率MOS开关电源的设计,进晶体管开关电源的设计,模拟
    发表于 04-14 17:24

    MJE13005D高压快速开关NPN功率晶体管英文手册

    电子发烧友网站提供《MJE13005D高压快速开关NPN功率晶体管英文手册.pdf》资料免费下载
    发表于 03-21 16:52 0次下载

    晶体管电路设计(下) [日 铃木雅臣]

    晶体管开关电路的设计,FET开关电路的设计,功率MOS电动机驱动电路,功率MOS开关电源的设计,晶体管
    发表于 03-07 13:55

    晶体管电路设计与制作

    这本书介绍了晶体管的基本特性,单电路的设计与制作, 双管电路的设计与制作,3~5电路的设计与制作,6以上电路的设计与制作。书中具体内容有:直流工作解析,交流工作解析,接地形式,单
    发表于 02-26 19:55

    开关如何测量好坏

    开关(又称为开关晶体管)在电子电路中充当开关的角色,广泛应用于电源电路、驱动电路以及各种功率控制系统中。开关
    的头像 发表于 02-18 10:50 4195次阅读
    <b class='flag-5'>开关</b><b class='flag-5'>管</b>如何测量好坏

    PMST3904 NPN开关晶体管规格书

    电子发烧友网站提供《PMST3904 NPN开关晶体管规格书.pdf》资料免费下载
    发表于 01-24 13:40 0次下载
    PMST3904 NPN<b class='flag-5'>开关晶体管</b>规格书

    BJT晶体管的工作原理

    BJT(Bipolar Junction Transistor)是双极结型晶体管的缩写,是一端有源器件,通过控制基区电流来控制集电区电流,从而实现电流的放大、调节和开关等功能。BJ
    的头像 发表于 12-31 16:11 5329次阅读