0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

功率MOSFET的正向导通等效电路

fcsde-sh 来源:张飞实战电子 作者:张飞实战电子 2021-01-06 11:08 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

功率MOSFET的正向导通等效电路

(1):等效电路

d95b1c6a-4418-11eb-8b86-12bb97331649.png

(2):说明

功率 MOSFET 正向导通时可用一电阻等效,该电阻与温度有关,温度升高,该电阻变大;它还与门极驱动电压的大小有关,驱动电压升高,该电阻变小。详细的关系曲线可从制造商的手册中获得。

功率MOSFET的反向导通等效电路(1)

(1):等效电路(门极不加控制)

d9858716-4418-11eb-8b86-12bb97331649.png

(2):说明

即内部二极管的等效电路,可用一电压降等效,此二极管为MOSFET 的体二极管,多数情况下,因其特性很差,要避免使用。

功率MOSFET的反向导通等效电路(2)

(1):等效电路(门极加控制)

d9abf388-4418-11eb-8b86-12bb97331649.png

(2):说明

功率 MOSFET 在门级控制下的反向导通,也可用一电阻等效,该电阻与温度有关,温度升高,该电阻变大;它还与门极驱动电压的大小有关,驱动电压升高,该电阻变小。详细的关系曲线可从制造商的手册中获得。此工作状态称为MOSFET 的同步整流工作,是低压大电流输出开关电源中非常重要的一种工作状态。

功率MOSFET的正向截止等效电路

(1):等效电路

d9d104ca-4418-11eb-8b86-12bb97331649.png

(2):说明

功率 MOSFET 正向截止时可用一电容等效,其容量与所加的正向电压、环境温度等有关,大小可从制造商的手册中获得。

功率MOSFET的稳态特性总结

(1):功率MOSFET 稳态时的电流/电压曲线

da034e80-4418-11eb-8b86-12bb97331649.jpg

(2):说明

功率 MOSFET 正向饱和导通时的稳态工作点:

da3ab94c-4418-11eb-8b86-12bb97331649.png

当门极不加控制时,其反向导通的稳态工作点同二极管。

(3):稳态特性总结

-- 门极与源极间的电压Vgs 控制器件的导通状态;当VgsVth时,器件处于导通状态;器件的通态电阻与Vgs有关,Vgs大,通态电阻小;多数器件的Vgs为 12V-15V ,额定值为+-30V;

-- 器件的漏极电流额定是用它的有效值或平均值来标称的;只要实际的漏极电流有效值没有超过其额定值,保证散热没问题,则器件就是安全的;

-- 器件的通态电阻呈正温度系数,故原理上很容易并联扩容,但实际并联时,还要考虑驱动的对称性和动态均流问题;

-- 目前的 Logic-Level的功率 MOSFET,其Vgs只要 5V,便可保证漏源通态电阻很小;

-- 器件的同步整流工作状态已变得愈来愈广泛,原因是它的通态电阻非常小(目前最小的为2-4 毫欧),在低压大电流输出的DC/DC 中已是最关键的器件;

包含寄生参数的功率MOSFET等效电路

(1):等效电路

da680190-4418-11eb-8b86-12bb97331649.png

(2):说明

实际的功率MOSFET 可用三个结电容,三个沟道电阻,和一个内部二极管及一个理想MOSFET 来等效。三个结电容均与结电压的大小有关,而门极的沟道电阻一般很小,漏极和源极的两个沟道电阻之和即为MOSFET 饱和时的通态电阻。

功率MOSFET的开通和关断过程原理

(1):开通和关断过程实验电路

da9f3142-4418-11eb-8b86-12bb97331649.png

(2):MOSFET 的电压和电流波形

dad03fb2-4418-11eb-8b86-12bb97331649.png

(3):开关过程原理

开通过程[ t0 ~ t4 ]:

在 t0 前,MOSFET 工作于截止状态,t0 时,MOSFET 被驱动开通;

[t0-t1]区间,MOSFET 的GS 电压经Vgg 对Cgs充电而上升,在t1时刻,到达维持电压Vth,MOSFET 开始导电;

[t1-t2]区间,MOSFET 的DS 电流增加,Millier 电容在该区间内因DS 电容的放电而放电,对GS 电容的充电影响不大;

[t2-t3]区间,至t2 时刻,MOSFET 的DS 电压降至与Vgs 相同的电压,Millier 电容大大增加,外部驱动电压对Millier 电容进行充电,GS 电容的电压不变,Millier 电容上电压增加,而DS电容上的电压继续减小;

[t3-t4]区间,至t3 时刻,MOSFET 的DS 电压降至饱和导通时的电压,Millier 电容变小并和GS 电容一起由外部驱动电压充电,GS 电容的电压上升,至t4 时刻为止。此时GS 电容电压已达稳态,DS 电压也达最小,即稳定的通态压降。

关断过程[ t5 ~t9 ]:

在 t5 前,MOSFET 工作于导通状态, t5 时,MOSFET 被驱动关断;

[t5-t6]区间,MOSFET 的Cgs 电压经驱动电路电阻放电而下降,在t6 时刻,MOSFET 的通态电阻微微上升,DS 电压梢稍增加,但DS 电流不变;

[t6-t7]区间,在t6 时刻,MOSFET 的Millier 电容又变得很大,故GS 电容的电压不变,放电电流流过Millier 电容,使DS 电压继续增加;

[t7-t8]区间,至t7 时刻,MOSFET 的DS 电压升至与Vgs 相同的电压,Millier 电容迅速减小,GS 电容开始继续放电,此时DS 电容上的电压迅速上升,DS 电流则迅速下降;

[t8-t9]区间,至t8 时刻,GS 电容已放电至Vth,MOSFET 完全关断;该区间内GS 电容继续放电直至零。

因二极管反向恢复引起的MOSFET开关波形

(1):实验电路

dade6bfa-4418-11eb-8b86-12bb97331649.png

(2):因二极管反向恢复引起的MOSFET 开关波形

db1a9274-4418-11eb-8b86-12bb97331649.jpg

功率MOSFET的功率损耗公式

(1):导通损耗

db3e11ae-4418-11eb-8b86-12bb97331649.png


该公式对控制整流和同步整流均适用

db7b1586-4418-11eb-8b86-12bb97331649.png


该公式在体二极管导通时适用

(2):容性开通和感性关断损耗

dba099be-4418-11eb-8b86-12bb97331649.png

dbbf111e-4418-11eb-8b86-12bb97331649.png

为MOSFET 器件与二极管回路中的所有分布电感只和。一般也可将这个损耗看成器件的感性关断损耗。

(3):开关损耗

开通损耗:

dc1e6768-4418-11eb-8b86-12bb97331649.png

考虑二极管反向恢复后:

dc7de954-4418-11eb-8b86-12bb97331649.png

关断损耗:

dca9a49a-4418-11eb-8b86-12bb97331649.png

驱动损耗:

dcd6b642-4418-11eb-8b86-12bb97331649.png

功率MOSFET的选择原则与步骤

(1):选择原则

(A):根据电源规格,合理选择MOSFET 器件(见下表):

(B):选择时,如工作电流较大,则在相同的器件额定参数下,

-- 应尽可能选择正向导通电阻小的 MOSFET;

-- 应尽可能选择结电容小的 MOSFET。

dd012f8a-4418-11eb-8b86-12bb97331649.jpg

(2):选择步骤

(A):根据电源规格,计算所选变换器中MOSFET 的稳态参数:

正向阻断电压最大值;

最大的正向电流有效值;

(B):从器件商的DATASHEET 中选择合适的MOSFET,可多选一些以便实验时比较;

(C):从所选的MOSFET 的其它参数,如正向通态电阻,结电容等等,估算其工作时的最大损耗,与其它元器件的损耗一起,估算变换器的效率;

(D):由实验选择最终的MOSFET 器件。

理想开关的基本要求

(1):符号

dd379886-4418-11eb-8b86-12bb97331649.png

(2):要求

(A):稳态要求

合上 K 后

开关两端的电压为零;

开关中的电流有外部电路决定;

开关电流的方向可正可负;

开关电流的容量无限。

断开 K 后

开关两端承受的电压可正可负;

开关中的电流为零;

开关两端的电压有外部电路决定;

开关两端承受的电压容量无限。

(B):动态要求:

K 的开通

控制开通的信号功率为零;

开通过程的时间为零。

K 的关断

控制关断的信号功率为零;

关断过程的时间为零。

(3):波形

dd46b6ae-4418-11eb-8b86-12bb97331649.png

其中:H:控制高电平;L:控制低电平

Ion 可正可负,其值有外部电路定;

Voff 可正可负,其值有外部电路定。

用电子开关实现理想开关的限制

(1):电子开关的电压和电流方向有限制

(2):电子开关的稳态开关特性有限制

导通时有电压降;(正向压降,通态电阻等)

截止时有漏电流;

最大的通态电流有限制;

最大的阻断电压有限制;

控制信号有功率要求,等等。

(3):电子开关的动态开关特性有限制

开通有一个过程,其长短与控制信号及器件内部结构有关;

关断有一个过程,其长短与控制信号及器件内部结构有关;

最高开关频率有限制。

目前作为开关的电子器件非常多。在开关电源中,用得最多的是二极管、MOSFET、IGBT 等,以及它们的组合。

电子开关的四种结构

(1):单象限开关

dd82619a-4418-11eb-8b86-12bb97331649.jpg

(2):电流双向(双象限)开关

ddb710d4-4418-11eb-8b86-12bb97331649.jpg

(3):电压双向(双象限)开关

ddfb6608-4418-11eb-8b86-12bb97331649.jpg

(4):四单象限开关

de3474ac-4418-11eb-8b86-12bb97331649.png

开关器件的分类

(1):按制作材料分类

(Si)功率器件;

(Ga)功率器件;

(GaAs)功率器件;

(SiC)功率器件;

(GaN)功率器件;--- 下一代

(Diamond)功率器件;--- 再下一代

(2):按是否可控分类

完全不控器件:如二极管器件;

可控制开通,但不能控制关断:如普通可控硅器件;

全控开关器件

电压型控制器件:如MOSFET,IGBT,IGT/COMFET ,SIT 等;

电流型控制期间:如GTR,GTO 等

(3):按工作频率分类

低频功率器件:如可控硅,普通二极管等;

中频功率器件:如GTR,IGBT,IGT/COMFET;

高频功率器件:如MOSFET,快恢复二极管,萧特基二极管,SIT 等

(4):按额定可实现的最大容量分类

小功率器件:如MOSFET

中功率器件:如IGBT

大功率器件:如GTO

(5):按导电载波的粒子分类

多子器件:如MOSFET,萧特基,SIT,JFET 等

少子器件:如IGBT,GTR,GTO,快恢复,等

不同开关器件的比较

(1):几种可关断器件的功率处理能力比较

de6758cc-4418-11eb-8b86-12bb97331649.png

(2):几种可关断器件的工作特性比较

de92c066-4418-11eb-8b86-12bb97331649.jpg

上面的数据会随器件的发展而不断变化,仅供参考。

责任编辑:lq

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 电阻
    +关注

    关注

    88

    文章

    5740

    浏览量

    178599
  • MOSFET
    +关注

    关注

    150

    文章

    9446

    浏览量

    229792
  • 等效电路
    +关注

    关注

    6

    文章

    296

    浏览量

    33729

原文标题:牛人居然把功率MOS剖析成这样,很难得的资料!

文章出处:【微信号:fcsde-sh,微信公众号:fcsde-sh】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    功率MOSFET管的应用问题分析

    只有0.06V,功率MOSFET管在反向工作时, VGS(th)是不是比正向导通时要低?是不是二极管的分流作用,导致反向工作时的压降降低? 回复:VGS(th)是功率
    发表于 11-19 06:35

    高效反向导通IGBT的原理详解

    在先进的反向导通绝缘栅双极晶体管(RCIGBT)中,低导通电压降(Vce(sat))和集成二极管正向电压(VF)对于有效减少导通损耗至关重要。
    的头像 发表于 10-10 09:25 2049次阅读
    高效反<b class='flag-5'>向导</b>通IGBT的原理详解

    求助:三极管等效电路图计算

    各位大神,请教一下这个题目怎么计算? 下面那个图是我自己做的微等效电路图,不知道对不对,错在哪个地方?我找了好些答案看不太懂,请各位大神指点迷津,谢谢!*附件:1.pdf 我判断是共基电路,为什么很多地方说是共射电路,思考了好
    发表于 09-03 15:47

    SiC MOSFET模块的损耗计算

    为了安全使用SiC模块,需要计算工作条件下的功率损耗和结温,并在额定值范围内使用。MOSFET损耗计算与IGBT既有相似之处,也有不同。相对IGBT,MOSFET可以反向导通,即工作在
    的头像 发表于 06-18 17:44 4181次阅读
    SiC <b class='flag-5'>MOSFET</b>模块的损耗计算

    初级元器件知识之功率MOSFET

    什么是功率 MOSFET? 我们都懂得如何利用二极管来实现开关,但是,我们只能对其进行开关操作,而不能逐渐控制信号流。此外,二极管作为开关取决于信号流的方向;我们不能对其编程以通过或屏蔽一个信号
    发表于 06-03 15:39

    使用 N-MOSFET 作为功率吸收路径有哪些优点?

    CCG8 使用 GPIO 来控制 FET 栅极驱动器的功率吸收路径, 我可以使用 P-MOSFET 作为电源接收路径吗? 使用 N-MOSFET 作为功率吸收路径有哪些优点?
    发表于 05-28 06:51

    模拟电路入门100个知识点

    大。 3、二极管的最主要特性是单向导电性。PN结外加正向电压时,扩散电流大于漂移电流,耗尽层变窄。 4、二极管最主要的电特性是单向导电性,稳压二极管在使用时,稳压二极管与负载并联,稳压二极管与输入
    发表于 04-25 15:51

    SiC MOSFET 开关模块RC缓冲吸收电路的参数优化设计

    吸收电路参数之间的关系,并求解出缓冲吸收电路参数的优化区间,最后通过仿真和实验验证该方法的正确性。1.  SiC-MOSFET 半桥主电路拓扑及其
    发表于 04-23 11:25

    MOSFET讲解-02(可下载)

    我们现在知道了,只要让 MOSFET 有一个导通的阈值电压,那么 这个 MOSFET 就导通了。那么在我们当前的这个电路中,假设 GS 电 容上有一个阈值电压,足可以让 MOSFET
    发表于 04-16 13:29 7次下载

    5-放大电路的频率响应(童诗白、华成英主编)

    频率响应的有关概念,晶体管的高频等效电路,放大电路的频率响应
    发表于 03-28 17:04

    互补MOSFET脉冲变压器的隔离驱动电路设计

    MOSFET 的极间电容较大,其等效电路如图 1 所示,输入电容 Ciss,输出电容 Coss 和反馈电容 Crss 与极间电容的关系可表示为: 功率 MOSFET 的栅极输入端相
    发表于 03-27 14:48

    MOSFET与IGBT的区别

    半导体产业现有的器件水平。 导通损耗除了IGBT的电压下降时间较长外,IGBT和功率MOSFET的导通特性十分类似。由基本的IGBT等效电路(见图1)可看出,完全调节PNP BJT集电极基极区的少数
    发表于 03-25 13:43

    MDD整流二极管的开关特性:正向导通与反向恢复的关键参数

    MDD整流二极管是电子电路中常见的元件,广泛应用于AC-DC转换、电源整流、电机驱动等领域。在高频电路中,整流二极管的开关特性对电路效率和EMI(电磁干扰)至关重要。其关键开关特性主要包括正向
    的头像 发表于 03-19 09:55 944次阅读
    MDD整流二极管的开关特性:<b class='flag-5'>正向导</b>通与反向恢复的关键参数

    BUCK电路分析

    及不同开关状态下的等效电路图 周期性的开关。通过电感中的电流 iL是否连续取决于开关频率、滤波电感和电容的数值。电感电流 iL 连续条件下其工作波形如图 5-6a 所示。电路稳定状态下的工作分析如下:1
    发表于 02-26 14:39

    谐振电阻较大或较小对电路的影响

    等效电阻ESR是晶体在等效电路中的总电阻。谐振电阻RR是晶振本身的电阻值。大小取决于晶体的内部摩擦、电极、支架等机械振动时的损失,以及周围环境条件等的影响损失。谐振电阻较大或者较小对电路有不同的影响。
    的头像 发表于 01-24 14:45 1075次阅读