0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

深度神经网络,通过使用数学模型来处理图像

倩倩 来源:新经网 作者:新经网 2020-12-16 10:22 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

它们具有看似复杂的结果,但也有可能被愚弄,范围从相对无害-将动物误识别为另一动物-到引导自动驾驶汽车的网络将停车标志误解为指示停车标志的潜在危险是可以安全进行的。

休斯顿大学的一位哲学家在发表于《自然机器智能》上的一篇论文中暗示,关于这些假定故障背后原因的普遍假设可能是错误的,这些信息对于评估这些网络的可靠性至关重要。

随着机器学习和其他形式的人工智能越来越深入地融入社会,从自动柜员机到网络安全系统,其用途广泛,UH哲学副教授卡梅伦·巴克纳(Cameron Buckner)表示,了解由什么导致的明显故障的来源至关重要。

研究人员称其为“对抗性例子”,是指当深度神经网络系统遇到用于构建网络的训练输入之外的信息时,会误判图像或其他数据。它们很罕见,被称为“对抗性”,因为它们通常是由另一个机器学习网络创建或发现的-机器学习领域中的一种边缘技术,介于创建复杂示例的更复杂方法与检测和避免它们的更复杂方法之间。

巴克纳说:“这些对抗性事件中的一些反而可能是人工产物,为了更好地了解这些网络的可靠性,我们需要更好地了解它们是什么。”

换句话说,不发火可能是由网络需要处理的内容和所涉及的实际模式之间的相互作用引起的。这与完全被误解不是完全一样的。

巴克纳写道:“理解对抗性例子的含义需要探索第三种可能性:至少其中一些模式是人工制品。”“……因此,目前简单地丢弃这些模式既有代价,也有天真地使用它们的危险。”

导致这些机器学习系统犯错误的对抗事件不一定是故意的渎职造成的,但这是最高的风险所在。

巴克纳说:“这意味着恶意行为者可能欺骗依赖于本来可靠的网络的系统。”“那有安全应用程序。”

责任编辑:lq

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 网络安全
    +关注

    关注

    11

    文章

    3457

    浏览量

    63085
  • 机器学习
    +关注

    关注

    66

    文章

    8542

    浏览量

    136332
  • 自动驾驶
    +关注

    关注

    791

    文章

    14698

    浏览量

    176970
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    神经网络的初步认识

    日常生活中的智能应用都离不开深度学习,而深度学习则依赖于神经网络的实现。什么是神经网络神经网络的核心思想是模仿生物
    的头像 发表于 12-17 15:05 42次阅读
    <b class='flag-5'>神经网络</b>的初步认识

    自动驾驶中常提的卷积神经网络是个啥?

    在自动驾驶领域,经常会听到卷积神经网络技术。卷积神经网络,简称为CNN,是一种专门用来处理网格状数据(比如图像)的深度学习
    的头像 发表于 11-19 18:15 1881次阅读
    自动驾驶中常提的卷积<b class='flag-5'>神经网络</b>是个啥?

    NMSIS神经网络库使用介绍

    NMSIS NN 软件库是一组高效的神经网络内核,旨在最大限度地提高 Nuclei N 处理器内核上的神经网络的性能并最​​大限度地减少其内存占用。 该库分为多个功能,每个功能涵盖特定类别
    发表于 10-29 06:08

    构建CNN网络模型并优化的一般化建议

    整个模型非常巨大。所以要想实现轻量级的CNN神经网络模型,首先应该避免尝试单层神经网络。 2)减少卷积核的大小:CNN神经网络
    发表于 10-28 08:02

    在Ubuntu20.04系统中训练神经网络模型的一些经验

    , batch_size=512, epochs=20)总结 这个核心算法中的卷积神经网络结构和训练过程,是用来对MNIST手写数字图像进行分类的。模型图像作为输入,
    发表于 10-22 07:03

    液态神经网络(LNN):时间连续性与动态适应性的神经网络

    神经元,但却能产生复杂的行为。受此启发,与传统的神经网络相比,LNN旨在通过模拟大脑中神经元之间的动态连接来处理信息,这种
    的头像 发表于 09-28 10:03 739次阅读
    液态<b class='flag-5'>神经网络</b>(LNN):时间连续性与动态适应性的<b class='flag-5'>神经网络</b>

    无刷电机小波神经网络转子位置检测方法的研究

    摘要:论文通过对无刷电机数学模型的推导,得出转角:与三相相电压之间存在映射关系,因此构建了一个以三相相电压为输人,转角为输出的小波神经网络来实现转角预测,并采用改进遗传算法来训练网络
    发表于 06-25 13:06

    基于FPGA搭建神经网络的步骤解析

    本文的目的是在一个神经网络已经通过python或者MATLAB训练好的神经网络模型,将训练好的模型的权重和偏置文件以TXT文件格式导出,然后
    的头像 发表于 06-03 15:51 931次阅读
    基于FPGA搭建<b class='flag-5'>神经网络</b>的步骤解析

    BP神经网络与卷积神经网络的比较

    多层。 每一层都由若干个神经元构成,神经元之间通过权重连接。信号在神经网络中是前向传播的,而误差是反向传播的。 卷积神经网络(CNN) :
    的头像 发表于 02-12 15:53 1386次阅读

    BP神经网络的优缺点分析

    BP神经网络(Back Propagation Neural Network)作为一种常用的机器学习模型,具有显著的优点,同时也存在一些不容忽视的缺点。以下是对BP神经网络优缺点的分析: 优点
    的头像 发表于 02-12 15:36 1641次阅读

    BP神经网络深度学习的关系

    ),是一种多层前馈神经网络,它通过反向传播算法进行训练。BP神经网络由输入层、一个或多个隐藏层和输出层组成,通过逐层递减的方式调整网络权重,
    的头像 发表于 02-12 15:15 1385次阅读

    BP神经网络图像识别中的应用

    BP神经网络图像识别中发挥着重要作用,其多层结构使得网络能够学习到复杂的特征表达,适用于处理非线性问题。以下是对BP神经网络
    的头像 发表于 02-12 15:12 1216次阅读

    如何训练BP神经网络模型

    BP(Back Propagation)神经网络是一种经典的人工神经网络模型,其训练过程主要分为两个阶段:前向传播和反向传播。以下是训练BP神经网络
    的头像 发表于 02-12 15:10 1493次阅读

    深度学习入门:简单神经网络的构建与实现

    深度学习中,神经网络是核心模型。今天我们用 Python 和 NumPy 构建一个简单的神经网络神经网络由多个
    的头像 发表于 01-23 13:52 864次阅读

    人工神经网络的原理和多种神经网络架构方法

    所拟合的数学模型的形式受到大脑中神经元的连接和行为的启发,最初是为了研究大脑功能而设计的。然而,数据科学中常用的神经网络作为大脑模型已经过时,现在它们只是能够在某些应用中提供最先进性能
    的头像 发表于 01-09 10:24 2303次阅读
    人工<b class='flag-5'>神经网络</b>的原理和多种<b class='flag-5'>神经网络</b>架构方法