0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

2021年的机器学习进入新阶段:量子机器学习

电子设计 来源:中电网 作者:中电网 2021-03-03 16:29 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

在处理海量COVID-19数据时,机器学习对2020年产生了巨大影响。为了在2021年实现ML的发展,开发人员正在加倍使用设备上AI、低功耗架构和框架兼容性等功能。

机器学习(ML)在2020年产生了前所未有的影响,特别是在通过数据处理检测和跟踪COVID-19病毒时。研究人员受益于使用ML分析大量信息并就大量人员的整体健康得出结论。

到2021年,ML在量子计算、机器人技术和基于边缘的AI中的应用将具有巨大的潜力。

流程图,描述了机器学习AI流程的各个阶段。

机器学习AI处理步骤的高级流程图。图片由sustAGE提供

这些应用程序的核心是硬件。特别是,三个针对硬件的思想对于ML硬件开发必不可少:面向边缘的设计,低功耗架构以及与ML框架的兼容性。

将ML推向边缘:内置AI

考虑到正在使用和处理的大量数据时,边缘智能变得越来越必要。在为边缘AI设计时,设计人员必须考虑许多约束,例如功耗,电路板空间和计算时间。

设备上的AI解决了其中一些问题,可以进行本地化处理,这有助于减少云计算的负担,同时还可以更快、更节能。许多制造商意识到了这一好处,并试图将设备上的AI包含在智能手机,车辆和IoT设备等各种应用中。通过考虑边缘设计,工程师可以在产品投放市场时为其提供竞争优势。

LG的SoC和LG8111开发板是边缘AI的最新硬件产品。该SoC和开发板包括LG专用的AI处理器和AI加速器。这些设备一起支持各种AI处理功能,例如语音,视频,图像和控制智能。

LG8111 SoC和开发板。图片由LG提供

该芯片还支持ASW IoT Greengrass,从而使该SoC和开发板可以根据设备托管各种应用程序和解决方案。

具有DSP和NN处理器的低功耗架构

在边缘进行设计时,功耗是最重要的考虑因素之一。机器学习处理大量数据;因此,在设计系统时,消除处理过程中的功率浪费是必要的。

实现低功耗架构的一种方法是同时使用低功耗数字信号处理器(DSP)和专用NN(神经网络)处理器。DSP Group通过其新的DVM10 DSP和nNetLite NN处理器将这种低功耗方案付诸实践。这种结构允许两个处理器之间具有不同的功能,具体取决于所安装的算法和框架。

这种设置还使处理器能够拆分读取数据和指定任务的过程,与所有任务只依靠一个处理器处理相比,减少功耗。

DBM10上受支持的应用程序以及当前的SoC。图片由DSPG提供

处理器的这种组合使SoC支持〜500μW的超低功耗推理,这对于大多数语音NN算法来说已经足够了。

与ML框架的兼容性

尽管编程和软件应用程序似乎与硬件设计是分开的,但它越来越成为一个交叉地带,尤其是在ML中。因此,有必要知道设备将使用什么框架。根据产品或用户的需求,拥有可以与各种ML框架兼容的处理器可能会有所帮助。

Ambarella的CV5处理器是框架兼容性的最新示例。CV5与常见的ML框架(例如Caffe,PyTorch,TensorFlow和ONNX)兼容。框架兼容性的灵活性为用户提供了多种选择,可将其神经网络集成到设备中。

2021年的机器学习:量子机器学习?

2021年预测的一个主要趋势是机器学习与量子计算的集成,被称为“量子机器学习”。根据《量子日报》的说法,量子机器学习指的是“旨在编写量子算法来执行机器学习任务的领域”。

对于经典计算机而言,某些机器学习算法过于复杂且劳动强度大。使用量子ML,研究人员可以将经典的ML算法转换为量子电路,从而使它们能够在量子计算机上有效运行。

经典机器学习(CML)与量子机器学习(GML)。图片由ICFO提供

新领域铺平道路

我们在去年看到了量子计算的商业化,同时增强了机器学习的优势。

在大流行仍在继续的情况下,迫切需要快速,准确的数据处理。通过使用板级设计选择扩展和发展机器学习,设计人员可以将机器学习推向边缘并解决日益增加的数据处理负担。
编辑:hfy

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • dsp
    dsp
    +关注

    关注

    559

    文章

    8214

    浏览量

    363966
  • AI
    AI
    +关注

    关注

    89

    文章

    38091

    浏览量

    296592
  • 机器学习
    +关注

    关注

    66

    文章

    8541

    浏览量

    136233
  • 量子计算
    +关注

    关注

    4

    文章

    1163

    浏览量

    36310
  • COVID-19
    +关注

    关注

    0

    文章

    226

    浏览量

    11254
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    量子机器学习入门:三种数据编码方法对比与应用

    在传统机器学习中数据编码确实相对直观:独热编码处理类别变量,标准化调整数值范围,然后直接输入模型训练。整个过程更像是数据清洗,而非核心算法组件。量子机器
    的头像 发表于 09-15 10:27 477次阅读
    <b class='flag-5'>量子</b><b class='flag-5'>机器</b><b class='flag-5'>学习</b>入门:三种数据编码方法对比与应用

    如何解决开发机器学习程序时Keil项目只能在调试模式下运行,但无法正常执行的问题?

    如何解决开发机器学习程序时Keil项目只能在调试模式下运行,但无法正常执行的问题
    发表于 08-28 07:28

    贸泽电子2025边缘AI与机器学习技术创新论坛回顾(上)

    2025,随着人工智能技术的快速发展,边缘AI与机器学习市场迎来飞速增长,据Gartner预计,2025至2030,边缘AI市场将保持
    的头像 发表于 07-21 11:08 990次阅读
    贸泽电子2025边缘AI与<b class='flag-5'>机器</b><b class='flag-5'>学习</b>技术创新论坛回顾(上)

    FPGA在机器学习中的具体应用

    随着机器学习和人工智能技术的迅猛发展,传统的中央处理单元(CPU)和图形处理单元(GPU)已经无法满足高效处理大规模数据和复杂模型的需求。FPGA(现场可编程门阵列)作为一种灵活且高效的硬件加速平台
    的头像 发表于 07-16 15:34 2632次阅读

    请问STM32部署机器学习算法硬件至少要使用哪个系列的芯片?

    STM32部署机器学习算法硬件至少要使用哪个系列的芯片?
    发表于 03-13 07:34

    SLAMTEC Aurora:把深度学习“卷”进机器人日常

    在人工智能和机器人技术飞速发展的今天,深度学习与SLAM(同步定位与地图构建)技术的结合,正引领着智能机器人行业迈向新的高度。最近科技圈顶流DeepSeek简直杀疯了!靠着逆天的深度学习
    的头像 发表于 02-19 15:49 723次阅读

    机器学习模型市场前景如何

    当今,随着算法的不断优化、数据量的爆炸式增长以及计算能力的飞速提升,机器学习模型的市场前景愈发广阔。下面,AI部落小编将探讨机器学习模型市场的未来发展。
    的头像 发表于 02-13 09:39 619次阅读

    人工智能和机器学习以及Edge AI的概念与应用

    与人工智能相关各种技术的概念介绍,以及先进的Edge AI(边缘人工智能)的最新发展与相关应用。 人工智能和机器学习是现代科技的核心技术 人工智能(AI)和机器学习(ML)是现代科技的
    的头像 发表于 01-25 17:37 1577次阅读
    人工智能和<b class='flag-5'>机器</b><b class='flag-5'>学习</b>以及Edge AI的概念与应用

    嵌入式机器学习的应用特性与软件开发环境

    作者:DigiKey Editor 在许多嵌入式系统中,必须采用嵌入式机器学习(Embedded Machine Learning)技术,这是指将机器学习模型部署在资源受限的设备(如微
    的头像 发表于 01-25 17:05 1210次阅读
    嵌入式<b class='flag-5'>机器</b><b class='flag-5'>学习</b>的应用特性与软件开发环境

    华为云 Flexus X 实例部署安装 Jupyter Notebook,学习 AI,机器学习算法

    前言 由于本人最近在学习一些机器算法,AI 算法的知识,需要搭建一个学习环境,所以就在最近购买的华为云 Flexus X 实例上安装了学习环境,Jupyter Notebook。没想到
    的头像 发表于 01-02 13:43 860次阅读
    华为云 Flexus X 实例部署安装 Jupyter Notebook,<b class='flag-5'>学习</b> AI,<b class='flag-5'>机器</b><b class='flag-5'>学习</b>算法

    传统机器学习方法和应用指导

    在上一篇文章中,我们介绍了机器学习的关键概念术语。在本文中,我们会介绍传统机器学习的基础知识和多种算法特征,供各位老师选择。 01 传统机器
    的头像 发表于 12-30 09:16 1982次阅读
    传统<b class='flag-5'>机器</b><b class='flag-5'>学习</b>方法和应用指导

    如何选择云原生机器学习平台

    当今,云原生机器学习平台因其弹性扩展、高效部署、低成本运营等优势,逐渐成为企业构建和部署机器学习应用的首选。然而,市场上的云原生机器
    的头像 发表于 12-25 11:54 699次阅读

    zeta在机器学习中的应用 zeta的优缺点分析

    在探讨ZETA在机器学习中的应用以及ZETA的优缺点时,需要明确的是,ZETA一词在不同领域可能有不同的含义和应用。以下是根据不同领域的ZETA进行的分析: 一、ZETA在机器学习
    的头像 发表于 12-20 09:11 1626次阅读

    cmp在机器学习中的作用 如何使用cmp进行数据对比

    机器学习领域,"cmp"这个术语可能并不是一个常见的术语,它可能是指"比较"(comparison)的缩写。 比较在机器学习中的作用 模型评估 :比较不同模型的性能是
    的头像 发表于 12-17 09:35 1323次阅读

    构建云原生机器学习平台流程

    构建云原生机器学习平台是一个复杂而系统的过程,涉及数据收集、处理、特征提取、模型训练、评估、部署和监控等多个环节。
    的头像 发表于 12-14 10:34 676次阅读