0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

算法的算法-人工神经网络

电子设计 来源:电子设计 作者:电子设计 2020-10-30 18:21 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

在上周的人工神经网络课程中介绍了机器学习中的支持向量机(SVM:Support Vector Machine)与前馈网络 RBF 的之间的联系,而对于由传递函数为线性函数组成的单层网络的代表自适应线性单元(ADLINE:Adaptive Linear Element)更是和传统信号处理中的自适应滤波器相类似。

这些都会让我们看到神经网络算法似乎能够与很多其他学科算法搭起联系。下面由 Matthew P. Burruss 的博文中《 Every Machine Learning Algorithm Can Be Represented as a Neural Network》 更是将这个观点进行了详细的梳理。

Every Machine Learning Algorithm Can Be Represented as a Neural Network》:
https://mc.ai/every-machine-learning-algorithm-can-be-represented-as-a-neural-network-2/#:~:text=Every%20Machine%20Learning%20Algorithm%20Can%20Be%20Represented%20as,cumulated%20with%20the%20creation%20of%20the%20neural%20network.

从 1950 年代的早期研究开始,机器学习的所有工作似乎都随着神经网络的创建而汇聚起来。从 Logistic 回归到支持向量机,算法层出不穷,毫不夸张的说,神经网络成为算法的算法,为机器学习的顶峰。它也从最初不断尝试中成为机器学习的通用表达形式。

在这个意义上,它不仅仅简单的是一个算法,而是一个框架和理念,这也为构建神经网络提供了更加广泛的自由空间:比如它包括不同的隐层数量和节点数量、各种形式的激活(传递)函数、优化工具、损失函数、网络类型(卷积、递归等)以及一些专用处理层(各种批处理模式、网络参数随机丢弃:Dropout 等)。

由此,可以将神经网络从一个固定算法展拓到一个通用观念,并得到如下有趣的推文:任何机器学习算法,无论是决策树还是 k 近邻,都可以使用神经网络来表示。

这个概念可以通过下面的一些举例得到验证,同样也可以使用数据进行严格的证明。

1. 回归

首先让我们定义什么是神经网络:它是一个由输入层,隐藏层和输出层组成的体系结构,每一层的节点之间都有连接。信息从输入层输入到网络,然后逐层通过隐层传递到输出层。在层之间传递过程中,数据通过线性变换(权重和偏差)和非线性函数(激励函数)变换。存在很多算法来对网络中可变参数进行训练。

Logistic 回归简单定义为标准回归,每个输入均具有乘法系数,并添加了附加偏移量(截距),然后经过 Signmoid 型函数传递。这可以通过没有隐藏层的神经网络来表示, 结果是通过 Sigmoid 形式的输出神经元的多元回归。

通过将输出神经元激活函数替换为线性激活函数(可以简单地映射输出,换句话说,它什么都不做),就形成线性回归。

2. 支持向量机

支持向量机(SVM)算法尝试通过所谓的"核函数技术"将数据投影到新的高维空间中,从而提高数据的线性可分离性。转换完数据后,算法可在高位空间获得两类之间最优的分类超平面。超平面被简单地定义为数据维度的线性组合,非常像 2 维空间中的直线和 3 维空间中的平面。

从这个意义上讲,人们可以将 SVM 算法看作是数据到新空间的投影,然后是 多重回归。神经网络的输出可以通过某种有界输出函数传递,以实现概率结果。

当然,可能需要实施一些限制,例如限制节点之间的连接并固定某些参数,这些更改当然不会脱离"神经网络"标签的完整性。也许需要添加更多的层,以确保支持向量机的这种表现能够达到与实际交易一样的效果。

3. 决策树

诸如决策树算法之类的基于树的算法有些棘手。关于如何构建这种神经网络的答案在于分析它如何划分其特征空间。当训练点遍历一系列拆分节点时,特征空间将拆分为多个超立方体。在二维示例中,垂直线和水平线创建了正方形。

因此,可以通过更严格的激活来模拟沿特征线分割特征空间的类似方式,例如阶跃函数,其中输入是一个值或另一个值 - 本质上是分隔线。权重和偏差可能需要实施值限制,因此仅用于通过拉伸,收缩和定位来定向分隔线。为了获得概率结果,可以通过激活函数传递结果。

尽管算法的神经网络表示与实际算法之间存在许多技术差异,但重点是网络表达的思想相同,并且可以与实际算法相同的策略和性能来解决问题。

也许您不满意将算法简单地转换为神经网络形式,也许希望看到通用过程可以将所有棘手的算法都进行这种转换,例如 k 近邻算法或朴素贝叶斯算法等,而不是针对每个算法都手工进行转换。

这种同样算法转换的答案就在于通用函数逼近定理,这也是在大量神经网络工作原理背后的支撑数学原理。它的主要含义是:足够大的神经网络可以以任意精度对任何函数建模。

假设有一些函数代表数据背后的规律:对于每个数据点,始终返回等于或非常接近 的值。

建模的目的是找到该内部映射关系一个有效表示,我们将其记为预测函数。所有机器学习算法对这个任务的处理方式都大不相同,采用不同用于验证结果有效的假设条件,并给出具体算法来获得最优结果。这些获得优化结果 p(x)的算法,可说从在这些假设条件限制下,利用纯粹的数学推导获得。描述函数如何将目标映射到输入的函数实际上可以采用任何形式。

有的时候通过数学推导可以对表达式进行求解。但面对大量待定函数参数,往往需要通过不停的试凑来搜索。但是,神经网络在寻找的方式上有些不同。

任何函数都可以由许多类似阶梯的部分合理地逼近,划分的区间步数越多,逼近的精度就越高。

每一个区间都对应神经网络中的一些节点,即隐层中具有 S 型激活函数的节点。激活函数本质上是概率阶跃函数。实际上每个节点都代表函数 的一个局部。然后,通过系统中的权重和偏差,网络为特定输入来激活不同的神经元,使其输出为 1),否则输出 0。于是便可以将不同函数的局部最后合并成整个函数。

这种处理模式不仅对应上面的一维函数有效,在图像中也观察到了这种通过激活不同节点以寻找数据中特定的模式。

通用逼近定理已扩展为适用于其他激活函数(如 ReLU 和神经网络类型),但原理仍然适用。神经网络是实现通用逼近定义的最佳表现形式。

相对于通过复杂方程和关系数学形式来描述通用逼近定理,神经网络则通过构建特殊的网络结构,并通过训练数据来获得结构中的参数。这个过程就好像是通过蛮力记忆将函数存储在网络中。这个汇集众多节点的网络结构,通过训练过程来逼近任意函数过程就表现出具有某种聪明特征的智能系统了。

基于以上假设,神经网络至少可以在理论上构造出一个函数,该函数基本上具有所需的精度(节点数越多,近似值越准确,当然不考虑过拟合的技术性),具有正确结构的神经网络可以对任何其他机器学习预测函数进行建模,反过来,其他任何机器学习算法,都不能这么说。

神经网络使用的方法并不是对一些现有的优化模型,比如多项式回归或者节点系统,只是对少量参数进行优化,它是直接去逼近数据内部所蕴含的规律,而不是基于某种特定的模型来描述数据。这种理念是那些常见到的网络模型结构与其它机器学习之间最为不同之处。

借助神经网络的力量以及对深度学习的不断延伸领域的不断研究,无论是视频,声音,流行病学数据还是两者之间的任何数据,都将能够以前所未有的精度来进行建模。神经网络确实可以被成为算法之算法。

审核编辑 黄昊宇

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 神经网络
    +关注

    关注

    42

    文章

    4827

    浏览量

    106792
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    CNN卷积神经网络设计原理及在MCU200T上仿真测试

    数的提出很大程度的解决了BP算法在优化深层神经网络时的梯度耗散问题。当x>0 时,梯度恒为1,无梯度耗散问题,收敛快;当x<0 时,该层的输出为0。 CNN
    发表于 10-29 07:49

    NMSIS神经网络库使用介绍

    NMSIS NN 软件库是一组高效的神经网络内核,旨在最大限度地提高 Nuclei N 处理器内核上的神经网络的性能并最​​大限度地减少其内存占用。 该库分为多个功能,每个功能涵盖特定类别
    发表于 10-29 06:08

    在Ubuntu20.04系统中训练神经网络模型的一些经验

    , batch_size=512, epochs=20)总结 这个核心算法中的卷积神经网络结构和训练过程,是用来对MNIST手写数字图像进行分类的。模型将图像作为输入,通过卷积和池化层提取图像的特征,然后通过全连接层进行分类预测。训练过程中,模型通过最小化损失函数来优化
    发表于 10-22 07:03

    液态神经网络(LNN):时间连续性与动态适应性的神经网络

    1.算法简介液态神经网络(LiquidNeuralNetworks,LNN)是一种新型的神经网络架构,其设计理念借鉴自生物神经系统,特别是秀丽隐杆线虫的
    的头像 发表于 09-28 10:03 695次阅读
    液态<b class='flag-5'>神经网络</b>(LNN):时间连续性与动态适应性的<b class='flag-5'>神经网络</b>

    无刷电机小波神经网络转子位置检测方法的研究

    摘要:论文通过对无刷电机数学模型的推导,得出转角:与三相相电压之间存在映射关系,因此构建了一个以三相相电压为输人,转角为输出的小波神经网络来实现转角预测,并采用改进遗传算法来训练网络结构与参数,借助
    发表于 06-25 13:06

    神经网络专家系统在电机故障诊断中的应用

    的诊断误差。仿真结果验证了该算法的有效性。 纯分享帖,需要者可点击附件免费获取完整资料~~~*附件:神经网络专家系统在电机故障诊断中的应用.pdf【免责声明】本文系网络转载,版权归原作者所有。本文所用视频、图片、文字如涉及作品版
    发表于 06-16 22:09

    AI神经网络降噪算法在语音通话产品中的应用优势与前景分析

    随着人工智能技术的快速发展,AI神经网络降噪算法在语音通话产品中的应用正逐步取代传统降噪技术,成为提升语音质量的关键解决方案。相比传统DSP(数字信号处理)降噪,AI降噪具有更强的环境适应能力、更高
    的头像 发表于 05-16 17:07 1101次阅读
    AI<b class='flag-5'>神经网络</b>降噪<b class='flag-5'>算法</b>在语音通话产品中的应用优势与前景分析

    BP神经网络网络结构设计原则

    BP(back propagation)神经网络是一种按照误差逆向传播算法训练的多层前馈神经网络,其网络结构设计原则主要基于以下几个方面: 一、层次结构 输入层 :接收外部输入信号,不
    的头像 发表于 02-12 16:41 1253次阅读

    BP神经网络与卷积神经网络的比较

    BP神经网络与卷积神经网络在多个方面存在显著差异,以下是对两者的比较: 一、结构特点 BP神经网络 : BP神经网络是一种多层的前馈神经网络
    的头像 发表于 02-12 15:53 1305次阅读

    如何优化BP神经网络的学习率

    训练过程中发生震荡,甚至无法收敛到最优解;而过小的学习率则会使模型收敛速度缓慢,容易陷入局部最优解。因此,正确设置和调整学习率对于训练高效、准确的神经网络模型至关重要。 二、学习率优化算法 梯度下降法及其变种 : 标准梯
    的头像 发表于 02-12 15:51 1422次阅读

    BP神经网络的优缺点分析

    自学习能力 : BP神经网络能够通过训练数据自动调整网络参数,实现对输入数据的分类、回归等任务,无需人工进行复杂的特征工程。 泛化能力强 : BP神经网络通过训练数据学习到的特征表示
    的头像 发表于 02-12 15:36 1573次阅读

    什么是BP神经网络的反向传播算法

    BP神经网络的反向传播算法(Backpropagation Algorithm)是一种用于训练神经网络的有效方法。以下是关于BP神经网络的反向传播
    的头像 发表于 02-12 15:18 1274次阅读

    BP神经网络与深度学习的关系

    ),是一种多层前馈神经网络,它通过反向传播算法进行训练。BP神经网络由输入层、一个或多个隐藏层和输出层组成,通过逐层递减的方式调整网络权重,目的是最小化
    的头像 发表于 02-12 15:15 1340次阅读

    BP神经网络在图像识别中的应用

    传播神经网络(Back Propagation Neural Network),是一种多层前馈神经网络,主要通过反向传播算法进行学习。它通常包括输入层、一个或多个隐藏层和输出层。BP神经网络
    的头像 发表于 02-12 15:12 1185次阅读

    人工神经网络的原理和多种神经网络架构方法

    在上一篇文章中,我们介绍了传统机器学习的基础知识和多种算法。在本文中,我们会介绍人工神经网络的原理和多种神经网络架构方法,供各位老师选择。 01
    的头像 发表于 01-09 10:24 2244次阅读
    <b class='flag-5'>人工</b><b class='flag-5'>神经网络</b>的原理和多种<b class='flag-5'>神经网络</b>架构方法