0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

卷积神经网络算法流程 卷积神经网络模型工作流程

工程师邓生 来源:未知 作者:刘芹 2023-08-21 16:50 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

卷积神经网络算法流程 卷积神经网络模型工作流程

卷积神经网络(Convolutional Neural Network,CNN)是一种广泛应用于目标跟踪、图像识别和语音识别等领域的深度学习模型,其独特的卷积结构可以有效地提取图像和音频等信息的特征,以用于分类、识别等任务。本文将从卷积神经网络的基本结构、前向传播算法、反向传播算法等方面探讨其算法流程与模型工作流程,并介绍其在图像分类、物体检测和人脸识别等领域中的应用。

一、卷积神经网络的基本结构

卷积神经网络的基本结构包括卷积层、池化层和全连接层。卷积层用于提取特征,通过多组卷积核与输入层的图像进行卷积运算,得到不同的特征图。池化层用于进行降采样操作,通过对特征图进行池化运算,降低特征图的分辨率,减少模型的计算复杂度,同时能够有效避免过拟合现象。全连接层用于将卷积层和池化层输出的特征图转化为分类结果,使模型可以对输入的样本进行分类。同时,在卷积神经网络中还会使用一些辅助层,如零填充层、批量归一化层和激活函数层等。

二、前向传播算法

前向传播算法是卷积神经网络的重要部分,其主要功能是将输入的图像经过卷积层、池化层和全连接层等处理后,输出所属类别的概率值。其基本过程如下:

1.首先对输入的图像进行预处理,包括图像归一化、色彩空间转换等操作。

2.将处理后的图像送入卷积层进行卷积计算。卷积计算的过程可以用公式进行表示:

$$f_{i,j}=\sum_{m=0}^{k-1}\sum_{n=0}^{k-1}x_{i+m,j+n}w_{m,n}+b$$

其中,$f_{i,j}$表示第$i$行第$j$列的卷积输出结果,$x_{i+m,j+n}$表示卷积核在图像中的第$m$行第$n$列的值,$w_{m,n}$表示卷积核的权重矩阵,$b$表示偏置。

3.经过卷积运算后,将输出的特征图送入池化层进行降采样操作。池化操作可以通过最大值池化、平均值池化等方式进行,其目的是减少特征图的维度,降低计算复杂度。

4.将池化后的结果送入全连接层中,对特征进行处理,产生输出结果。全连接层的计算公式如下:

$$h=W*x+b$$
其中,$W$表示权重矩阵,$x$表示特征向量,$b$表示偏置。

5.经过全连接层后,通过输出层得到最终的分类结果。输出层通常使用softmax函数来对不同类别的概率进行估计。

三、反向传播算法

反向传播算法是卷积神经网络中的重要组成部分,其主要功能是通过计算误差梯度,反向调整卷积核的权重矩阵和偏置等参数,以在训练过程中不断优化模型的性能。

反向传播算法的过程可以分为以下几个步骤:

1.计算误差。通过输出层计算得到分类结果与标准结果之间的误差。

2.反向传播误差。将误差传回全连接层,并沿着网络反向传播,逐层计算误差。根据经验,可以使用交叉熵等常见误差函数来计算误差。

3.计算参数梯度。通过误差计算参数梯度,并对权重矩阵和偏置进行调整。

4.更新参数。使用学习率来更新参数。学习率可以根据经验进行选择,一般来说,初始学习率为0.1,之后通过人为调整来选择合适的值。

四、卷积神经网络模型工作流程

卷积神经网络的模型工作流程通常包括以下几个步骤:

1.数据预处理。对输入的数据进行预处理,包括图像归一化、色彩空间转换等操作。

2.网络建模。根据具体应用需求,选择合适的卷积神经网络结构,并进行网络的建模,包括卷积层、池化层、全连接层等。

3.网络训练。将大规模的训练数据送入模型中,使用前向传播算法计算梯度,使用反向传播算法进行优化,不断调整权重矩阵和偏置等参数,以提高模型的性能。

4.网络测试。使用测试数据集对模型进行测试,计算模型的准确率和效果等指标,根据实际需求调整网络结构和参数等内容。

五、卷积神经网络的应用

卷积神经网络在图像分类、物体检测和人脸识别等领域中有着广泛的应用,以下是本文对其应用的具体介绍:

1.图像分类。卷积神经网络可以通过对图像的卷积和池化等操作,提取出图像的特征信息,用于图像分类等任务。比如,经典的卷积神经网络模型LeNet在MNIST手写数字识别任务上表现出色。

2.物体检测。卷积神经网络可以通过对图像的每个部位进行卷积和池化等操作,提取图像的全尺寸特征,从而实现对物体的检测。比如,Faster R-CNN物体检测模型在COCO数据集上取得了优秀的性能。

3.人脸识别。卷积神经网络可以通过对人脸图像进行卷积和池化等操作,提取出人脸的特征信息,用于人脸识别等任务。比如,FaceNet人脸识别模型在Labeled Faces in the Wild数据集上取得了优秀的性能。

综上所述,卷积神经网络是一种具备卓越特征提取能力的深度学习模型,其在图像分类、物体检测和人脸识别等领域中有着广泛的应用。通过深入研究卷积神经网络的算法流程与模型工作流程,我们可以更好地了解其原理与特点,以为实际应用场景的开发与优化提供有益的指导和参考。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 神经网络
    +关注

    关注

    42

    文章

    4827

    浏览量

    106783
  • 图像识别
    +关注

    关注

    9

    文章

    529

    浏览量

    39836
  • 卷积神经网络

    关注

    4

    文章

    371

    浏览量

    12716
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    自动驾驶中常提的卷积神经网络是个啥?

    在自动驾驶领域,经常会听到卷积神经网络技术。卷积神经网络,简称为CNN,是一种专门用来处理网格状数据(比如图像)的深度学习模型。CNN在图像
    的头像 发表于 11-19 18:15 1829次阅读
    自动驾驶中常提的<b class='flag-5'>卷积</b><b class='flag-5'>神经网络</b>是个啥?

    CNN卷积神经网络设计原理及在MCU200T上仿真测试

    CNN算法简介 我们硬件加速器的模型为Lenet-5的变型,网络粗略分共有7层,细分共有13层。包括卷积,最大池化层,激活层,扁平层,全连接层。下面是各层作用介绍:
    发表于 10-29 07:49

    NMSIS神经网络库使用介绍

    :   神经网络卷积函数   神经网络激活函数   全连接层函数   神经网络池化函数   Softmax 函数   神经网络支持功能
    发表于 10-29 06:08

    构建CNN网络模型并优化的一般化建议

    整个模型非常巨大。所以要想实现轻量级的CNN神经网络模型,首先应该避免尝试单层神经网络。 2)减少卷积核的大小:CNN
    发表于 10-28 08:02

    卷积运算分析

    的数据,故设计了ConvUnit模块实现单个感受域规模的卷积运算. 卷积运算:不同于数学当中提及到的卷积概念,CNN神经网络中的卷积严格意义
    发表于 10-28 07:31

    在Ubuntu20.04系统中训练神经网络模型的一些经验

    , batch_size=512, epochs=20)总结 这个核心算法中的卷积神经网络结构和训练过程,是用来对MNIST手写数字图像进行分类的。模型将图像作为输入,通过
    发表于 10-22 07:03

    CICC2033神经网络部署相关操作

    读取。接下来需要使用扩展指令,完成神经网络的部署,此处仅对第一层卷积+池化的部署进行说明,其余层与之类似。 1.使用 Custom_Dtrans 指令,将权重数据、输入数据导入硬件加速器内。对于权重
    发表于 10-20 08:00

    卷积神经网络如何监测皮带堵料情况 #人工智能

    卷积神经网络
    jf_60804796
    发布于 :2025年07月01日 17:08:42

    无刷电机小波神经网络转子位置检测方法的研究

    摘要:论文通过对无刷电机数学模型的推导,得出转角:与三相相电压之间存在映射关系,因此构建了一个以三相相电压为输人,转角为输出的小波神经网络来实现转角预测,并采用改进遗传算法来训练网络
    发表于 06-25 13:06

    BP神经网络卷积神经网络的比较

    BP神经网络卷积神经网络在多个方面存在显著差异,以下是对两者的比较: 一、结构特点 BP神经网络 : BP神经网络是一种多层的前馈
    的头像 发表于 02-12 15:53 1305次阅读

    如何优化BP神经网络的学习率

    训练过程中发生震荡,甚至无法收敛到最优解;而过小的学习率则会使模型收敛速度缓慢,容易陷入局部最优解。因此,正确设置和调整学习率对于训练高效、准确的神经网络模型至关重要。 二、学习率优化算法
    的头像 发表于 02-12 15:51 1421次阅读

    BP神经网络的优缺点分析

    BP神经网络(Back Propagation Neural Network)作为一种常用的机器学习模型,具有显著的优点,同时也存在一些不容忽视的缺点。以下是对BP神经网络优缺点的分析: 优点
    的头像 发表于 02-12 15:36 1570次阅读

    什么是BP神经网络的反向传播算法

    BP神经网络的反向传播算法(Backpropagation Algorithm)是一种用于训练神经网络的有效方法。以下是关于BP神经网络的反向传播
    的头像 发表于 02-12 15:18 1273次阅读

    BP神经网络与深度学习的关系

    ),是一种多层前馈神经网络,它通过反向传播算法进行训练。BP神经网络由输入层、一个或多个隐藏层和输出层组成,通过逐层递减的方式调整网络权重,目的是最小化
    的头像 发表于 02-12 15:15 1339次阅读

    人工神经网络的原理和多种神经网络架构方法

    在上一篇文章中,我们介绍了传统机器学习的基础知识和多种算法。在本文中,我们会介绍人工神经网络的原理和多种神经网络架构方法,供各位老师选择。 01 人工神经网络   人工
    的头像 发表于 01-09 10:24 2243次阅读
    人工<b class='flag-5'>神经网络</b>的原理和多种<b class='flag-5'>神经网络</b>架构方法