0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

卷积神经网络算法有哪些?

工程师邓生 来源:未知 作者:刘芹 2023-08-21 16:50 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

卷积神经网络算法有哪些?

卷积神经网络(Convolutional Neural Network, CNN) 是一种基于多层感知器(multilayer perceptron, MLP)的深度学习算法。它在图像识别、语音识别和自然语言处理等领域有着广泛的应用,成为近年来最为热门的人工智能算法之一。CNN基于卷积运算和池化操作,可以对图像进行有损压缩、提取特征,有效降低输入数据的维度,从而实现对大量数据的处理和分析。下面是对CNN算法的详细介绍:

1. 卷积神经网络的基本结构

卷积神经网络的基本结构包括输入层、卷积层、激活层、池化层和全连接层。其中,输入层主要负责接收输入数据,比如图片、音频等;卷积层主要负责特征提取,通过卷积核进行卷积操作提取图像特征;激活层主要负责对卷积层输出进行非线性变换,激活特征,增强模型的表达能力;池化层主要负责对数据进行下采样操作,降低数据的大小,减少计算量;全连接层主要负责输出分类结果,实现对图像数据的分类。

2. 卷积神经网络的算法流程

卷积神经网络的算法流程主要分为训练和测试两步。在训练阶段,CNN通过损失函数定义模型的误差,并使用反向传播算法进行参数更新,最终得到模型的各个卷积核参数。在测试阶段,CNN使用前向传播算法对数据进行分类,结果输出分类预测值和概率。

3. 卷积神经网络的常用算法

目前,卷积神经网络的常用算法包括LeNet、AlexNet、VGGNet、GoogLeNet、ResNet等。以下是对这些算法的详细介绍:

3.1 LeNet

LeNet是由Yann Lecun等人在1998年提出的一种浅层卷积神经网络算法,主要用于手写数字识别。LeNet的基本结构包括两个卷积层和三个全连接层,其中,第一个卷积层的卷积核大小为5x5,提取6个特征,第二个卷积层的卷积核大小为5x5,提取16个特征。LeNet的最终输出结果是10个数字类别的概率,并通过Softmax函数进行分类。

3.2 AlexNet

AlexNet是由Alex Krizhevsky等人在2012年发布的一种大规模深度卷积神经网络算法,通过研究Imagenet图像识别挑战赛中的大规模图像识别,AlexNet在当时的竞赛中获得了第一名。AlexNet的基本结构包括5个卷积层和3个全连接层,其中,第一个卷积层的卷积核大小为11x11,提取96个特征,后续的卷积层大小逐渐减小,提取特征数逐渐增多。AlexNet最终输出了1000个类别的概率,并通过Softmax函数进行分类。

3.3 VGGNet

VGGNet是由Karen Simonyan和Andrew Zisserman在2014年提出的一种基于卷积神经网络深度的算法,其结构非常简单,每层只包含卷积层、ReLU激活层和池化层三种结构,通过堆叠深度的卷积神经网络增加了模型的深度,从而提高了模型准确率,VGGNet在Imagenet图像识别任务中获得了非常优秀的成绩。VGGNet的结构非常简单,只有卷积核大小不同,共包括5个卷积层和3个全连接层,每个卷积层的卷积核大小都为3x3,提取特征数量逐渐加大。

3.4 GoogLeNet

GoogLeNet是由Google公司的研究人员在2014年提出的一种基于深度卷积神经网络的算法,其最大的特点是使用了Inception模块,通过堆叠Inception模块增加了网络模型的深度和宽度,以实现更强的特征表达能力。GoogLeNet中包含22个卷积层,目前我们最熟悉的道出发,提取出的特征数量为1000,其中使用了Inception模块,使模型在准确性和参数数量上都比传统的卷积神经网络要好。

3.5 ResNet

ResNet是由Microsoft在2015年提出的一种基于残差网络的算法,通过直接让输入作为输出和合并卷积操作来实现学习残差,在比传统的卷积神经网络更深的情况下准确率更好。ResNet的残差模块中含有两个卷积层,其目的是学习残差,这样模型就可以非常深,同时可以避免训练难度无法逐步加深的问题。

4. 卷积神经网络的优缺点

卷积神经网络具有以下优点:

(1) 卷积神经网络可以自动提取特征,无需人为提取。

(2) 卷积神经网络的参数共享原则,大大减少了模型的参数数量,避免了过拟合问题。

(3) 卷积神经网络具有良好的空间局部性和平移不变性,避免了输入数据的维度灾难问题。

(4) 卷积神经网络能够灵活处理各种尺度和大小的输入,适用于多种应用领域。

卷积神经网络的缺点包括:

(1) 卷积神经网络需要大量的训练数据,才能达到较好的分类效果。

(2) 卷积神经网络的训练时间较长,需要使用GPU或分布式计算加速。

(3) 卷积神经网络的一些结构设计,如卷积核大小、层数等参数需要经过大量的试验才能得到最优选择,缺乏明确的理论指导。

5. 结论

卷积神经网络是一种非常强大的深度学习算法,具备自动提取特征、参数共享、空间局部性和平移不变性等优点,广泛应用于图像识别、语音识别和自然语言处理等领域。未来,卷积神经网络将继续发挥巨大的作用,有望在更多的应用领域中得到广泛应用和推广。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    自动驾驶中常提的卷积神经网络是个啥?

    在自动驾驶领域,经常会听到卷积神经网络技术。卷积神经网络,简称为CNN,是一种专门用来处理网格状数据(比如图像)的深度学习模型。CNN在图像处理中尤其常见,因为图像本身就可以看作是由像
    的头像 发表于 11-19 18:15 1825次阅读
    自动驾驶中常提的<b class='flag-5'>卷积</b><b class='flag-5'>神经网络</b>是个啥?

    CNN卷积神经网络设计原理及在MCU200T上仿真测试

    数的提出很大程度的解决了BP算法在优化深层神经网络时的梯度耗散问题。当x&gt;0 时,梯度恒为1,无梯度耗散问题,收敛快;当x&lt;0 时,该层的输出为0。 CNN
    发表于 10-29 07:49

    NMSIS神经网络库使用介绍

    :   神经网络卷积函数   神经网络激活函数   全连接层函数   神经网络池化函数   Softmax 函数   神经网络支持功能
    发表于 10-29 06:08

    卷积运算分析

    的数据,故设计了ConvUnit模块实现单个感受域规模的卷积运算. 卷积运算:不同于数学当中提及到的卷积概念,CNN神经网络中的卷积严格意义
    发表于 10-28 07:31

    在Ubuntu20.04系统中训练神经网络模型的一些经验

    , batch_size=512, epochs=20)总结 这个核心算法中的卷积神经网络结构和训练过程,是用来对MNIST手写数字图像进行分类的。模型将图像作为输入,通过卷积和池化
    发表于 10-22 07:03

    CICC2033神经网络部署相关操作

    读取。接下来需要使用扩展指令,完成神经网络的部署,此处仅对第一层卷积+池化的部署进行说明,其余层与之类似。 1.使用 Custom_Dtrans 指令,将权重数据、输入数据导入硬件加速器内。对于权重
    发表于 10-20 08:00

    液态神经网络(LNN):时间连续性与动态适应性的神经网络

    1.算法简介液态神经网络(LiquidNeuralNetworks,LNN)是一种新型的神经网络架构,其设计理念借鉴自生物神经系统,特别是秀丽隐杆线虫的
    的头像 发表于 09-28 10:03 651次阅读
    液态<b class='flag-5'>神经网络</b>(LNN):时间连续性与动态适应性的<b class='flag-5'>神经网络</b>

    卷积神经网络如何监测皮带堵料情况 #人工智能

    卷积神经网络
    jf_60804796
    发布于 :2025年07月01日 17:08:42

    无刷电机小波神经网络转子位置检测方法的研究

    摘要:论文通过对无刷电机数学模型的推导,得出转角:与三相相电压之间存在映射关系,因此构建了一个以三相相电压为输人,转角为输出的小波神经网络来实现转角预测,并采用改进遗传算法来训练网络结构与参数,借助
    发表于 06-25 13:06

    神经网络专家系统在电机故障诊断中的应用

    的诊断误差。仿真结果验证了该算法的有效性。 纯分享帖,需要者可点击附件免费获取完整资料~~~*附件:神经网络专家系统在电机故障诊断中的应用.pdf【免责声明】本文系网络转载,版权归原作者所有。本文所用视频、图片、文字如涉及作品版
    发表于 06-16 22:09

    BP神经网络网络结构设计原则

    BP(back propagation)神经网络是一种按照误差逆向传播算法训练的多层前馈神经网络,其网络结构设计原则主要基于以下几个方面: 一、层次结构 输入层 :接收外部输入信号,不
    的头像 发表于 02-12 16:41 1247次阅读

    BP神经网络卷积神经网络的比较

    BP神经网络卷积神经网络在多个方面存在显著差异,以下是对两者的比较: 一、结构特点 BP神经网络 : BP神经网络是一种多层的前馈
    的头像 发表于 02-12 15:53 1301次阅读

    什么是BP神经网络的反向传播算法

    BP神经网络的反向传播算法(Backpropagation Algorithm)是一种用于训练神经网络的有效方法。以下是关于BP神经网络的反向传播
    的头像 发表于 02-12 15:18 1269次阅读

    BP神经网络与深度学习的关系

    ),是一种多层前馈神经网络,它通过反向传播算法进行训练。BP神经网络由输入层、一个或多个隐藏层和输出层组成,通过逐层递减的方式调整网络权重,目的是最小化
    的头像 发表于 02-12 15:15 1338次阅读

    人工神经网络的原理和多种神经网络架构方法

    在上一篇文章中,我们介绍了传统机器学习的基础知识和多种算法。在本文中,我们会介绍人工神经网络的原理和多种神经网络架构方法,供各位老师选择。 01 人工神经网络   人工
    的头像 发表于 01-09 10:24 2232次阅读
    人工<b class='flag-5'>神经网络</b>的原理和多种<b class='flag-5'>神经网络</b>架构方法