0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

Linux环境下段错误的产生原因及调试方法小结

Linux阅码场 来源:Linuxer 2020-04-30 15:23 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

最近在Linux环境下做C语言项目,由于是在一个原有项目基础之上进行二次开发,而且项目工程庞大复杂,出现了不少问题,其中遇到最多、花费时间最长的问题就是著名的“段错误”(Segmentation Fault)。借此机会系统学习了一下,这里对Linux环境下的段错误做个小结,方便以后同类问题的排查与解决。

1. 段错误是什么

一句话来说,段错误是指访问的内存超出了系统给这个程序所设定的内存空间,例如访问了不存在的内存地址、访问了系统保护的内存地址、访问了只读的内存地址等等情况。这里贴一个对于“段错误”的准确定义(参考Answers.com):

A segmentation fault (often shortened to segfault) is a particular error condition that can occur during the operation of computer software. In short, a segmentation fault occurs when a program attempts to access a memory location that it is not allowed to access, or attempts to access a memory location in a way that is not allowed (e.g., attempts to write to a read-only location, or to overwrite part of the operating system). Systems based on processors like the Motorola 68000 tend to refer to these events as Address or Bus errors. Segmentation is one approach to memory management and protection in the operating system. It has been superseded by paging for most purposes, but much of the terminology of segmentation is still used, "segmentation fault" being an example. Some operating systems still have segmentation at some logical level although paging is used as the main memory management policy. On Unix-like operating systems, a process that accesses invalid memory receives the SIGSEGV signal. On Microsoft Windows, a process that accesses invalid memory receives the STATUS_ACCESS_VIOLATION exception.

2. 段错误产生的原因

2.1 访问不存在的内存地址

#include#includevoid main(){int *ptr = NULL; *ptr = 0;}

2.2 访问系统保护的内存地址

#include#includevoid main(){int *ptr = (int *)0; *ptr = 100;}

2.3 访问只读的内存地址

#include#include#includevoid main(){char *ptr = "test"; strcpy(ptr, "TEST");}

2.4 栈溢出

#include#includevoid main(){ main();}

等等其他原因。

3. 段错误信息的获取

程序发生段错误时,提示信息很少,下面有几种查看段错误的发生信息的途径。

3.1 dmesg

dmesg可以在应用程序crash掉时,显示内核中保存的相关信息。如下所示,通过dmesg命令可以查看发生段错误的程序名称、引起段错误发生的内存地址、指令指针地址、堆栈指针地址、错误代码、错误原因等。以程序2.3为例:

panfeng@ubuntu:~/segfault$ dmesg[ 2329.479037] segfault3[2700]: segfault at 80484e0 ip 00d2906a sp bfbbec3c error 7 in libc-2.10.1.so[cb4000+13e000]

3.2 -g

使用gcc编译程序的源码时,加上-g参数,这样可以使得生成的二进制文件中加入可以用于gdb调试的有用信息。以程序2.3为例:

panfeng@ubuntu:~/segfault$ gcc -g -o segfault3 segfault3.c

3.3 nm

使用nm命令列出二进制文件中的符号表,包括符号地址、符号类型、符号名等,这样可以帮助定位在哪里发生了段错误。以程序2.3为例:

panfeng@ubuntu:~/segfault$ nm segfault308049f20 d _DYNAMIC08049ff4 d _GLOBAL_OFFSET_TABLE_080484dc R _IO_stdin_used w _Jv_RegisterClasses08049f10 d __CTOR_END__08049f0c d __CTOR_LIST__08049f18 D __DTOR_END__08049f14 d __DTOR_LIST__080484ec r __FRAME_END__08049f1c d __JCR_END__08049f1c d __JCR_LIST__0804a014 A __bss_start0804a00c D __data_start08048490 t __do_global_ctors_aux08048360 t __do_global_dtors_aux0804a010 D __dso_handle w __gmon_start__0804848a T __i686.get_pc_thunk.bx08049f0c d __init_array_end08049f0c d __init_array_start08048420 T __libc_csu_fini08048430 T __libc_csu_init U __libc_start_main@@GLIBC_2.00804a014 A _edata0804a01c A _end080484bc T _fini080484d8 R _fp_hw080482bc T _init08048330 T _start0804a014 b completed.69900804a00c W data_start0804a018 b dtor_idx.6992080483c0 t frame_dummy080483e4 T main U memcpy@@GLIBC_2.0

3.4 ldd

使用ldd命令查看二进制程序的共享链接库依赖,包括库的名称、起始地址,这样可以确定段错误到底是发生在了自己的程序中还是依赖的共享库中。以程序2.3为例:

panfeng@ubuntu:~/segfault$ ldd ./segfault3 linux-gate.so.1 => (0x00e08000) libc.so.6 => /lib/tls/i686/cmov/libc.so.6 (0x00675000) /lib/ld-linux.so.2 (0x00482000)

4. 段错误的调试方法

4.1 使用printf输出信息

这个是看似最简单但往往很多情况下十分有效的调试方式,也许可以说是程序员用的最多的调试方式。简单来说,就是在程序的重要代码附近加上像printf这类输出信息,这样可以跟踪并打印出段错误在代码中可能出现的位置。

为了方便使用这种方法,可以使用条件编译指令#ifdef DEBUG和#endif把printf函数包起来。这样在程序编译时,如果加上-DDEBUG参数就能查看调试信息;否则不加该参数就不会显示调试信息。

4.2 使用gcc和gdb

4.2.1 调试步骤

1、为了能够使用gdb调试程序,在编译阶段加上-g参数,以程序2.3为例:

panfeng@ubuntu:~/segfault$ gcc -g -o segfault3 segfault3.c

2、使用gdb命令调试程序:

panfeng@ubuntu:~/segfault$ gdb ./segfault3GNU gdb (GDB) 7.0-ubuntuCopyright (C) 2009 Free Software Foundation, Inc.License GPLv3+: GNU GPL version 3 or later This is free software: you are free to change and redistribute it.There is NO WARRANTY, to the extent permitted by law. Type "show copying"and "show warranty" for details.This GDB was configured as "i486-linux-gnu".For bug reporting instructions, please see:...Reading symbols from /home/panfeng/segfault/segfault3...done.(gdb)

3、进入gdb后,运行程序:

(gdb) runStarting program: /home/panfeng/segfault/segfault3 Program received signal SIGSEGV, Segmentation fault.0x001a306a in memcpy () from /lib/tls/i686/cmov/libc.so.6(gdb)

从输出看出,程序2.3收到SIGSEGV信号,触发段错误,并提示地址0x001a306a、调用memcpy报的错,位于/lib/tls/i686/cmov/libc.so.6库中。

4、完成调试后,输入quit命令退出gdb:

(gdb) quitA debugging session is active. Inferior 1 [process 3207] will be killed. Quit anyway? (y or n) y

4.2.2 适用场景

1、仅当能确定程序一定会发生段错误的情况下使用。

2、当程序的源码可以获得的情况下,使用-g参数编译程序。

3、一般用于测试阶段,生产环境下gdb会有副作用:使程序运行减慢,运行不够稳定,等等。

4、即使在测试阶段,如果程序过于复杂,gdb也不能处理。

4.3 使用core文件和gdb

在4.2节中提到段错误会触发SIGSEGV信号,通过man 7 signal,可以看到SIGSEGV默认的handler会打印段错误出错信息,并产生core文件,由此我们可以借助于程序异常退出时生成的core文件中的调试信息,使用gdb工具来调试程序中的段错误。

4.3.1 调试步骤

1、在一些Linux版本下,默认是不产生core文件的,首先可以查看一下系统core文件的大小限制:

panfeng@ubuntu:~/segfault$ ulimit -c0

2、可以看到默认设置情况下,本机Linux环境下发生段错误时不会自动生成core文件,下面设置下core文件的大小限制(单位为KB):

panfeng@ubuntu:~/segfault$ ulimit -c 1024panfeng@ubuntu:~/segfault$ ulimit -c1024

3、运行程序2.3,发生段错误生成core文件:

panfeng@ubuntu:~/segfault$ ./segfault3段错误 (core dumped)

4、加载core文件,使用gdb工具进行调试:

panfeng@ubuntu:~/segfault$ gdb ./segfault3 ./coreGNU gdb (GDB) 7.0-ubuntuCopyright (C) 2009 Free Software Foundation, Inc.License GPLv3+: GNU GPL version 3 or later This is free software: you are free to change and redistribute it.There is NO WARRANTY, to the extent permitted by law. Type "show copying"and "show warranty" for details.This GDB was configured as "i486-linux-gnu".For bug reporting instructions, please see:...Reading symbols from /home/panfeng/segfault/segfault3...done. warning: Can't read pathname for load map: 输入/输出错误.Reading symbols from /lib/tls/i686/cmov/libc.so.6...(no debugging symbols found)...done.Loaded symbols for /lib/tls/i686/cmov/libc.so.6Reading symbols from /lib/ld-linux.so.2...(no debugging symbols found)...done.Loaded symbols for /lib/ld-linux.so.2Core was generated by `./segfault3'.Program terminated with signal 11, Segmentation fault.#0 0x0018506a in memcpy () from /lib/tls/i686/cmov/libc.6

从输出看出,同4.2.1中一样的段错误信息。

5、完成调试后,输入quit命令退出gdb:

(gdb) quit

4.3.2 适用场景

1、适合于在实际生成环境下调试程序的段错误(即在不用重新发生段错误的情况下重现段错误)。

2、当程序很复杂,core文件相当大时,该方法不可用。

4.4 使用objdump

4.4.1 调试步骤

1、使用dmesg命令,找到最近发生的段错误输出信息:

panfeng@ubuntu:~/segfault$ dmesg... ...[17257.502808] segfault3[3320]: segfault at 80484e0 ip 0018506a sp bfc1cd6c error 7 in libc-2.10.1.so[110000+13e000]

其中,对我们接下来的调试过程有用的是发生段错误的地址:80484e0和指令指针地址:0018506a。

2、使用objdump生成二进制的相关信息,重定向到文件中:

panfeng@ubuntu:~/segfault$ objdump -d ./segfault3 > segfault3Dump

其中,生成的segfault3Dump文件中包含了二进制文件的segfault3的汇编代码。

3、在segfault3Dump文件中查找发生段错误的地址:

panfeng@ubuntu:~/segfault$ grep -n -A 10 -B 10 "80484e0" ./segfault3Dump121- 80483df: ff d0 call *%eax122- 80483e1: c9 leave123- 80483e2: c3 ret124- 80483e3: 90 nop125-126-080483e4

:127- 80483e4: 55 push %ebp128- 80483e5: 89 e5 mov %esp,%ebp129- 80483e7: 83 e4 f0 and $0xfffffff0,%esp130- 80483ea: 83 ec 20 sub $0x20,%esp131: 80483ed: c7 44 24 1c e0 84 04 movl $0x80484e0,0x1c(%esp)132- 80483f4: 08133- 80483f5: b8 e5 84 04 08 mov $0x80484e5,%eax134- 80483fa: c7 44 24 08 05 00 00 movl $0x5,0x8(%esp)135- 8048401: 00136- 8048402: 89 44 24 04 mov %eax,0x4(%esp)137- 8048406: 8b 44 24 1c mov 0x1c(%esp),%eax138- 804840a: 89 04 24 mov %eax,(%esp)139- 804840d: e8 0a ff ff ff call 804831c 140- 8048412: c9 leave141- 8048413: c3 ret

通过对以上汇编代码分析,得知段错误发生main函数,对应的汇编指令是movl $0x80484e0,0x1c(%esp),接下来打开程序的源码,找到汇编指令对应的源码,也就定位到段错误了。

4.4.2 适用场景

1、不需要-g参数编译,不需要借助于core文件,但需要有一定的汇编语言基础。

2、如果使用了gcc编译优化参数(-O1,-O2,-O3)的话,生成的汇编指令将会被优化,使得调试过程有些难度。

4.5 使用catchsegv

catchsegv命令专门用来扑获段错误,它通过动态加载器(ld-linux.so)的预加载机制(PRELOAD)把一个事先写好的库(/lib/libSegFault.so)加载上,用于捕捉断错误的出错信息。

panfeng@ubuntu:~/segfault$ catchsegv ./segfault3Segmentation fault (core dumped)*** Segmentation faultRegister dump: EAX: 00000000 EBX: 00fb3ff4 ECX: 00000002 EDX: 00000000 ESI: 080484e5 EDI: 080484e0 EBP: bfb7ad38 ESP: bfb7ad0c EIP: 00ee806a EFLAGS: 00010203 CS: 0073 DS: 007b ES: 007b FS: 0000 GS: 0033 SS: 007b Trap: 0000000e Error: 00000007 OldMask: 00000000 ESP/signal: bfb7ad0c CR2: 080484e0 Backtrace:/lib/libSegFault.so[0x3b606f]??:0(??)[0xc76400]/lib/tls/i686/cmov/libc.so.6(__libc_start_main+0xe6)[0xe89b56]/build/buildd/eglibc-2.10.1/csu/../sysdeps/i386/elf/start.S:122(_start)[0x8048351] Memory map: 00258000-00273000 r-xp 00000000 08:01 157 /lib/ld-2.10.1.so00273000-00274000 r--p 0001a000 08:01 157 /lib/ld-2.10.1.so00274000-00275000 rw-p 0001b000 08:01 157 /lib/ld-2.10.1.so003b4000-003b7000 r-xp 00000000 08:01 13105 /lib/libSegFault.so003b7000-003b8000 r--p 00002000 08:01 13105 /lib/libSegFault.so003b8000-003b9000 rw-p 00003000 08:01 13105 /lib/libSegFault.so00c76000-00c77000 r-xp 00000000 00:00 0 [vdso]00e0d000-00e29000 r-xp 00000000 08:01 4817 /lib/libgcc_s.so.100e29000-00e2a000 r--p 0001b000 08:01 4817 /lib/libgcc_s.so.100e2a000-00e2b000 rw-p 0001c000 08:01 4817 /lib/libgcc_s.so.100e73000-00fb1000 r-xp 00000000 08:01 1800 /lib/tls/i686/cmov/libc-2.10.1.so00fb1000-00fb2000 ---p 0013e000 08:01 1800 /lib/tls/i686/cmov/libc-2.10.1.so00fb2000-00fb4000 r--p 0013e000 08:01 1800 /lib/tls/i686/cmov/libc-2.10.1.so00fb4000-00fb5000 rw-p 00140000 08:01 1800 /lib/tls/i686/cmov/libc-2.10.1.so00fb5000-00fb8000 rw-p 00000000 00:00 008048000-08049000 r-xp 00000000 08:01 303895 /home/panfeng/segfault/segfault308049000-0804a000 r--p 00000000 08:01 303895 /home/panfeng/segfault/segfault30804a000-0804b000 rw-p 00001000 08:01 303895 /home/panfeng/segfault/segfault309432000-09457000 rw-p 00000000 00:00 0 [heap]b78cf000-b78d1000 rw-p 00000000 00:00 0b78df000-b78e1000 rw-p 00000000 00:00 0bfb67000-bfb7c000 rw-p 00000000 00:00 0 [stack]

5. 一些注意事项

1、出现段错误时,首先应该想到段错误的定义,从它出发考虑引发错误的原因。

2、在使用指针时,定义了指针后记得初始化指针,在使用的时候记得判断是否为NULL。

3、在使用数组时,注意数组是否被初始化,数组下标是否越界,数组元素是否存在等。

4、在访问变量时,注意变量所占地址空间是否已经被程序释放掉。

5、在处理变量时,注意变量的格式控制是否合理等。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 二进制
    +关注

    关注

    2

    文章

    809

    浏览量

    42818
  • Linux
    +关注

    关注

    88

    文章

    11635

    浏览量

    218100
  • 内存
    +关注

    关注

    9

    文章

    3174

    浏览量

    76146

原文标题:Linux环境下段错误的产生原因及调试方法小结

文章出处:【微信号:LinuxDev,微信公众号:Linux阅码场】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    单片机系统硬件的调试方法

    单片机的系统硬件调试,通常有静态调试和动态调试两种不同,前者是通过目测、万能表测试、加电检查、联机检查的方法,在加电于样机之前.对样机的型号规格,以及安装要求等进行核对,同时检查 电源
    发表于 12-03 06:10

    瑞萨RZ/T2H PCIe通信的调试方法

    本文阐述了RZ/T2H的PCIe外设作为EP,在Windows上做驱动开发、速率测试时,可能会遇到无法被Windows识别的问题。本文总结了一些调试方法和技巧,来排查问题原因和解决方法
    的头像 发表于 11-20 16:53 4795次阅读
    瑞萨RZ/T2H PCIe通信的<b class='flag-5'>调试</b><b class='flag-5'>方法</b>

    移植蜂鸟需要在Linux环境下吗?

    《手把手教你设计CPU》书上运行Verilog仿真测试那章说为了重现仿真环境,最好在Linux环境下。不知道移植蜂鸟是否需要在Linux环境
    发表于 11-10 07:42

    e203仿真报Syntax error: \"&amp;\"unexpected错误原因

    刚开始接触学习e203,仿真的第一步就遇上问题。按照手册在linux环境下跑仿真遇到如图错误: 有人说是e203版本问题,遂下载了更早的版本: https://github.com
    发表于 11-05 13:39

    在Windows和Linux环境下分别使用Olimex和蜂鸟调试器下载程序

    本队伍编号CICC3042,本篇文章介绍在Windows和Linux环境下分别使用Olimex和蜂鸟调试器下载程序,和上一篇Hbirdv2的移植配合使用。 使用过第一版蜂鸟的同学们可能按照书中
    发表于 10-31 08:26

    国产!全志T113-i 双核Cortex-A7@1.2GHz 工业开发板—GDB程序调试方法说明

    前  言 本指导文档适用开发环境:   Windows开发环境:Windows 7 64bit、Windows 10 64bit 虚拟机:VMware15.5.5 Linux开发环境
    的头像 发表于 08-05 15:33 350次阅读
    国产!全志T113-i 双核Cortex-A7@1.2GHz 工业开发板—GDB程序<b class='flag-5'>调试</b><b class='flag-5'>方法</b>说明

    Linux系统环境监测终极指南

    Linux系统环境主要监测CPU、内存、磁盘I/O和网络流量。
    的头像 发表于 06-25 14:41 575次阅读
    <b class='flag-5'>Linux</b>系统<b class='flag-5'>环境</b>监测终极指南

    激光焊锡中虚焊产生原因和解决方法

    激光焊锡是发展的非常成熟的一种焊接技术,但是在一些参数控制不好的情况下,依然会产生一些焊接问题,比如说虚焊的问题。松盛光电来给大家介绍一下激光锡焊中虚焊问题产生原因及其解决方案。
    的头像 发表于 06-25 09:41 1158次阅读

    硬件调试:JLink 驱动配置与调试技巧

    摘要: 本文深入探讨了 JLink 调试器在嵌入式系统硬件调试中的应用,详细阐述了 JLink 驱动配置的方法以及硬件调试技巧。本文以国科安芯的AS32系列MCU芯片为例,通过分析 J
    的头像 发表于 06-12 23:20 1305次阅读
    硬件<b class='flag-5'>调试</b>:JLink 驱动配置与<b class='flag-5'>调试</b>技巧

    远程日志errDump调试功能实战教程:案例驱动的故障排查!

    及Air8101开发板实操验证。   一、errDump功能介绍 1.1 errDump有什么用? errDump是LuatOS系统中的错误日志上报模块,主要用于远程调试与故障诊断。 其原理是将模块运行过程中产生
    的头像 发表于 06-09 16:51 547次阅读
    远程日志errDump<b class='flag-5'>调试</b>功能实战教程:案例驱动的故障排查!

    晶圆表面清洗静电力产生原因

    晶圆表面清洗过程中产生静电力的原因主要与材料特性、工艺环境和设备操作等因素相关,以下是系统性分析: 1. 静电力产生的核心机制 摩擦起电(Triboelectric Effect) 接
    的头像 发表于 05-28 13:38 650次阅读

    UVC FX3 I2C通信错误\"CY_U3P_ERROR_LOST_ARBITRATION\"的原因

    我试图在 FX3 板和我的定制板之间建立 I2C 通信,但在 CyU3PI2cReceiveBytes 函数中遇到错误 55\"CY_U3P_ERROR_LOST_ARBITRATION\" 。 请说明出现此错误原因以及
    发表于 05-21 06:17

    聚焦离子束(FIB)技术:芯片调试的利器

    FIB技术在芯片调试中的关键应用1.电路修改与修复在芯片设计和制造过程中,由于种种原因可能会出现设计错误或制造缺陷。FIB技术能够对芯片电路进行精细的修改和修复。通过切断错误的金属连接
    的头像 发表于 02-17 17:19 1080次阅读
    聚焦离子束(FIB)技术:芯片<b class='flag-5'>调试</b>的利器

    无线收发器有杂音滋滋滋的原因及解决方法

    本文将深入探讨无线收发器产生杂音的原因,并提供相应的解决方法
    的头像 发表于 01-29 15:35 3674次阅读

    无功补偿故障原因及解决方法

    无功补偿故障可能由多种原因引起,以下是一些常见的故障原因及其解决方法
    的头像 发表于 01-29 14:25 2673次阅读