0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

采用零漂移运算放大器设计的注意事项

贸泽电子设计圈 来源:贸泽电子设计圈 2020-04-28 09:16 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

零漂移运算放大器

一种特殊形式的运算放大器,适用于精密应用,在这些应用中,输入差分信号非常小,输入引脚上的任何偏移都可能在输出端引起严重误差。

这些专用运算放大器除了具有低输入失调电压外,通常还在宽温度和时间范围內具有高共模抑制比(CMRR)、高电源抑制比(PSRR)、高开环增益和较低的漂移。所有这些特性使它们成为精密应用的理想选择,因为这些器件能够精确地测量小的差分电压,并且高开环增益确保良好的闭环增益精度。它们也不太容易受到外界如电源变化、共模电压和温度效应的影响。

零漂移运算放大器特别适合于差分信号较小的精密应用,尤其是低频应用。这包括物联网IoT)和工业4.0应用(工业物联网IoT)中使用的许多感知方案。

随着在电池供电(或能量采集)应用中趋向使用低功耗、节能传感器,零漂移运算放大器在许多现代应用中尤其有用,如现在正迅速增长的IoT。

(一)输入偏置电压

输入失调电压是个重要参数,因为它定义了可以捕获和放大的最小信号,从而限定了较低的动态范围。在数据表中,通常将其称为VOS或VIO。它是IN+和IN-端子之间差分电压的量度,有效地测量了运算放大器输入对的匹配程度。

在理论上理想的运算放大器中,输入端子在闭环系统中将处于相同的电压电平。但在实际应用中,总会有一些输入失调电压,不过很小。这是由于半导体材料的实际变化导致输入引脚上的内部电压升高。这些材料差异还会导致输入失调电压随温度变化而产生幅度变化甚至极性变化,使应用中的校准极具挑战性。

典型的通用运算放大器的输入失调电压约为几毫伏,而专用零漂移运算放大器的输入失调电压约为10-25微伏,小两个数量级。

(二)零漂移技术和架构

可采用几种技术来确保在宽广的温度和时间范围内具有低输入失调电压,以产生零漂移运算放大器。实现此目标的方法之一是定期测量输入失调电压,然后施加校正电压以调整运算放大输出的偏移量。这种方法被称为“斩波稳定”,因其在前馈部分使用了斩波器。

斩波稳定技术的主要限制在于斩波器的电路中包含时钟系统。因此,零漂移运算放大器易受经典采样系统混叠或外差问题的影响。当输入信号的频率类似于斩波电路的时钟频率时,这尤为明显。斩波稳定运算放大器的最佳性能出现在输入信号频率保持在相关奈奎斯特频率以下时。设计人员应注意确保输入频率保持在失调校正频率的一半以下(并在闭环带宽内),以获得最佳性能。

创建零漂移架构的另一种方法称为“自动归零”。尽管系统架构最初看起来类似于具有高频路径和低频前馈校正路径的斩波稳定架构,但实现方式却大不相同。

虽然所有斩波稳定和自动归零运算放大器都易受混叠影响,但可以减轻这种影响。例如,安森美半导体的NCS333和NCS21911器件含两个级联对称型RC陷波滤波器,这些滤波器已调谐到斩波频率和5次谐波。与市场上的其他器件相比,这种布置能够减小混叠效应,并提供强大的性能。

(三)采用零漂移运算放大器设计的注意事项

使用零漂移运算放大器的主要设计考虑因素涉及减轻混叠。这现象不应被认为是一种缺陷,这是需要了解和缓解的现象。

减轻混叠的关键是知道运算放大器的时钟频率。在许多情况下,制造商不会发布信息,因此需要进行实验以推断。最简单和最有效的一个方法是简单的时域测试,同时使用示波器监视输出。合理地假设频率在器件的增益带宽积之内,则放大器输入应从零频率扫描到增益带宽积。测试表明,时钟频率通常是增益带宽积的三分之一,但并非总是如此。

为从零漂移放大器获得最佳性能,设计人员应遵循奈奎斯特采样理论,并确保最大信号频率小于内部时钟频率的一半。但精密模拟电路对从杂散信号、噪声或纹波中拾取敏感,其中任何一个都可能包含高于奈奎斯特频率的频率,这可能会导致误差或错误的输出。

好的做法是在放大器之前加入一个模拟低通滤波器,以用作抗混叠滤波器。滤波器衰减高于奈奎斯特频率的频率以减少或消除任何混叠。该滤波器必须是纯模拟的并且没有有源元件。在许多情况下,只需要一个简单的两段级联RC滤波器。

一般而言,级联零漂移放大器并不是好的设计实践,因为不同的时钟频率可能会相互作用,从而导致不良影响,包括可能的混叠。建议使用相对较低值的输入电阻,因为斩波稳定电路会产生输入电流尖峰,从而产生电压,电压随后被放大。如前所述,可使用合适的无源RC滤波器来衰减这些尖峰。

设计人员还应意识到,零漂移运算放大器的建立时间有限,因为斩波电路是基于时间的采样。这意味着输入的大动态步长(或过载)可能使环路需要时间来重新建立低输入失调。但通过使用更高的时钟频率,可以期望快速恢复和建立,通常在几十微秒之内。任何事情都需要权衡取舍,在这也不例外,因为更快的建立速度可能导致更高的输入失调。大多数零漂移运算放大器都优先在建立时间内减小输入失调。

由于在零漂移运算放大器内有相当数量的逻辑电路,启动所需的时间是有限的,在此期间,输出将反映未经校正的输入失调电压。在大多数情况下,这不是个问题,因为影响只发生在最初的几个时钟周期,而相关的时间是在整个系统的上电时间内。

如果设计人员使用仿真工具来开发电路,应意识到SPICE模型不能深入了解零漂移行为,如混叠。典型的SPICE模型能够模拟设备的线性性能,而不是斩波器的性能,部分原因是这会降低模拟的速度。
(四)小结

输入失调电压是所有运算放大器的一个关键参数,对于看重此参数的应用,可采用专用的零漂移运算放大器,实现在低差分输入情况下的精密应用。就像所有的工程方案,设计人员需要权衡取舍以获得最佳性能。而这些专用器件使输入频率保持在奈奎斯特频率以下,并提供一些基本的无源滤波,极其适用于低频传感器应用。

图1:斩波稳定运算放大器的简化框图

图2:自动归零运算放大器的简化框图

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 运算放大器
    +关注

    关注

    218

    文章

    5847

    浏览量

    180052
  • 电压
    +关注

    关注

    45

    文章

    5757

    浏览量

    120966
  • 工业物联网
    +关注

    关注

    25

    文章

    2491

    浏览量

    67144

原文标题:利用斩波稳定架构零漂移运算放大器优势的切实考虑

文章出处:【微信号:Mouser-Community,微信公众号:贸泽电子设计圈】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    TSB182:超高精度、漂移、36V 运算放大器的理想之选

    STMicroelectronics TSB181/TSB182超高精度运算放大器是精度极高、漂移、单或双运算放大器。TSB181/TSB182的最大输入失调电压为20µV。该器件
    的头像 发表于 10-23 15:24 441次阅读
    TSB182:超高精度、<b class='flag-5'>零</b><b class='flag-5'>漂移</b>、36V <b class='flag-5'>运算放大器</b>的理想之选

    Microchip MIC333/2333:重新定义低功耗高精度测量的漂移运算放大器

    /MIC2333设备可在低至+1.8V的单电源电压运行,静态电流为23µA/放大器(典型值)。这些漂移运算放大器采用先进的CMOS工艺设
    的头像 发表于 09-28 14:14 451次阅读
    Microchip MIC333/2333:重新定义低功耗高精度测量的<b class='flag-5'>零</b>点<b class='flag-5'>漂移</b><b class='flag-5'>运算放大器</b>

    OPAx186精密运算放大器技术解析:漂移架构与高精度信号调理方案

    Texas Instruments OPAx186精密运算放大器(运放)是一款低功耗、24V、轨到轨输入和输出漂移运算放大器。该放大器只有
    的头像 发表于 09-09 14:13 592次阅读
    OPAx186精密<b class='flag-5'>运算放大器</b>技术解析:<b class='flag-5'>零</b><b class='flag-5'>漂移</b>架构与高精度信号调理方案

    Texas Instruments OPAx383漂移运算放大器数据手册

    Texas Instruments OPAx383漂移运算放大器是一系列提供先进性能的精密放大器。OPAx383失调电压和失调漂移
    的头像 发表于 07-09 11:52 610次阅读
    Texas Instruments OPAx383<b class='flag-5'>零</b><b class='flag-5'>漂移</b><b class='flag-5'>运算放大器</b>数据手册

    Texas Instruments TLVx888漂移多路复用友好型运算放大器数据手册

    Texas Instruments TLVx888漂移多路复用友好型运算放大器(运放)是一种宽带宽、低噪声、漂移
    的头像 发表于 07-08 14:45 586次阅读
    Texas Instruments TLVx888<b class='flag-5'>零</b><b class='flag-5'>漂移</b>多路复用友好型<b class='flag-5'>运算放大器</b>数据手册

    中微爱芯高精度漂移运算放大器产品线介绍

    不同带宽系列的高精度漂移运算放大器-AiP855X和AiP853X。它们采用2.4V至5.5V单电源供电或±1.2V~±2.75V双电源供电,均为输入、输出轨到轨结构,且具有低噪声的
    的头像 发表于 07-01 10:08 1737次阅读
    中微爱芯高精度<b class='flag-5'>零</b><b class='flag-5'>漂移</b><b class='flag-5'>运算放大器</b>产品线介绍

    运算放大器测试基础:测试运算放大器需要稳定的测试环路

    输出要求。精心选择低输入偏置电流环路放大器,可使输出电流产生的误差非常小。 此外,三运算放大器环路也可帮您测量 IQ,但要注意被测量器件输出端的 1MΩ 电阻器,这将成为一个问题,因为无论测量哪种参数
    发表于 06-06 13:52

    OPA180 温漂、低噪声、轨到轨输出、36V、漂移运算放大器技术手册

    OPA180、OPA2180和OPA4180运算放大器采用TI的专有漂移技术,可同时提供低失调电压(75µV),并随时间推移和温度变化实现接近
    的头像 发表于 04-29 10:56 776次阅读
    OPA180 <b class='flag-5'>零</b>温漂、低噪声、轨到轨输出、36V、<b class='flag-5'>零</b><b class='flag-5'>漂移</b><b class='flag-5'>运算放大器</b>技术手册

    运算放大器的基本应用方式

    上篇我们了解了运算放大器在使用之前的一些重要注意事项。本篇让我们来了解一下如何将运算放大器在系统设计中使用得恰到好处,让其能力得以充分发挥。
    的头像 发表于 04-21 16:43 1387次阅读
    <b class='flag-5'>运算放大器</b>的基本应用方式

    名单公布!【书籍评测活动NO.60】运算放大器参数解析与LTspice应用仿真

    ;>社区活动专版标题名称必须包含【「# 运算放大器参数解析与LTspice应用仿真」阅读体验】+自拟标题 注意事项 1、活动期间如有作弊、灌水等违反电子发烧友论坛规则的行为一经发现将立即取消
    发表于 04-21 16:18

    运算放大器的使用注意事项

    上篇我们了解了运算放大器的基本定义和内部工作原理。在本篇中,为了把运算放大器用好,建议我们在使用之前,先弄清一些重要的产品性质和注意事项
    的头像 发表于 04-07 17:18 1247次阅读
    <b class='flag-5'>运算放大器</b>的使用<b class='flag-5'>注意事项</b>

    开始学运算放大器笔记一 | 认识运算放大器

    )是一种模拟电路模块,它采用差分电压输入,产生单端电压输出。它可以对输入信号进行放大以及加、减、乘、除、微分、积分等数学运算,现多应用于信号放大功能。一个
    的头像 发表于 03-24 19:32 3762次阅读
    从<b class='flag-5'>零</b>开始学<b class='flag-5'>运算放大器</b>笔记一 | 认识<b class='flag-5'>运算放大器</b>

    TLV2888 低噪声、漂移、宽带宽、多路复用器友好型运算放大器技术手册

    TLV888、TLV2888 和 TLV4888 (TLVx888) 是宽带宽、低噪声、漂移运算放大器 (op amp)。这些运算放大器在宽温度范围内具有仅 15µV 的偏移电压(最
    的头像 发表于 03-15 10:40 1283次阅读
    TLV2888 低噪声、<b class='flag-5'>零</b><b class='flag-5'>漂移</b>、宽带宽、多路复用器友好型<b class='flag-5'>运算放大器</b>技术手册

    运算放大器和普通放大器的区别

    在电子电路设计中,放大器是必不可少的组件之一。它们用于增强信号的幅度,以便进行进一步的处理或传输。运算放大器和普通放大器是两种常见的放大器类型,它们在应用、性能和设计上有着显著的差异。
    的头像 发表于 12-18 15:31 2390次阅读

    运算放大器的基本原理 运算放大器的应用实例

    运算放大器的核心部分,它能够放大两个输入端之间的电压差。当反相输入端(-)的电压高于非反相输入端(+)时,输出为正;反之,输出为负。 3. 虚短和虚断 在理想运算放大器中,两个输入端的电压相等(虚短),且输入电流为
    的头像 发表于 12-18 15:25 3047次阅读