0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

欧姆定律是什么

454398 来源:工程师吴畏 2019-08-02 17:08 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

电压,电流电阻

当电路完成时(即电源端子之间存在导电路径,例如电池或电源连接)电子通过导电路径从负端子移动到正端子。这种电子流被称为电流,但为什么这种电流首先流动?为了使电子移动,它们需要某种力来推动它们,这就是电压的作用!

电压源提供了一种称为电位差的东西,可以认为是作为电子的拉力。如果两个电池端子通过导线连接,则正极端子将电子拉向它,负极端子将它们推开。那么,当在端子之间形成导电通路时,是什么阻止电池一侧的所有电子立即流到另一侧?这就是电阻的来源!

电阻可以被认为是材料抵抗电子流动的能力,而较高的电阻导致电子发现它更难以通过。为了更好地理解这一点,我们将使用一个类比。

想象一下当前人们在走廊和电压供应中移动的人是试图推动人们穿过走廊的人。如果那些“推动器”(电压源)需要更多的人通过走廊(更高的电流),那么他们需要更加努力(更高的电压)。但人们只能通过走廊如此之快,如果中间有一扇狭窄的门,每个人都需要穿过(一个抵抗),那么穿过的人数会更低。因此,人们可以通过走廊移动的速度取决于推动者推动的力度以及门口的狭窄程度。

回到电压,电流和电阻,这三者是相关的非常有名的方程式称为欧姆定律:

V = IR

然而,这个等式具有误导性,因为它意味着电压是由于电流和阻力是不正确的。电流是电压和电阻的结果,公式应写成:

I = V/R

电压,电流和电阻都有自己的测量单位,名称和符号:

电压以伏特(V)为单位测量

电流以安培为单位测量(A)

电阻以欧姆(Ω)测量

使用欧姆定律

使用V = IR时必须谨慎,因为有些人会混淆使用哪种电压。该等式基本上告诉我们的是,电阻两端的电压将等于电阻乘以流过它的电流。看到这一点的最佳方法是看一些简单的例子。

第一个例子显示1Ω的电阻连接到10V电池,通过电阻产生的电流为10A。

欧姆定律是什么

第二个例子显示两个串联电阻,每个电阻上的电压下降。

第三个例子显示并联的两个电阻,它们之间的电压降,以及通过每个电阻的电流。

第四个例子显示并联的两个电阻带电阻的系列。注意有关电压的任何有趣内容?

如果您现在还没有注意到完整循环中的所有电压(从+端子到 - 端子),请添加高达电源电压,这被称为基尔霍夫的电压定律!如果您知道串联的所有其他组件的电压降,则在尝试确定组件两端的电压时,此法则非常方便。但并联的电压总是相同的,可以方便地并行计算元件间的电流。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 欧姆定律
    +关注

    关注

    4

    文章

    186

    浏览量

    20419
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    直流电流采样电路全解析与应用

    精密电阻两端会产生电压差。根据欧姆定律,即电流I等于电压U除以电阻R,通过将精密电阻两端的电压差除以精密电阻的阻值,即可得出电路中的电流值。
    的头像 发表于 12-09 15:47 178次阅读
    直流电流采样电路全解析与应用

    电阻测量技术的双生花:两线法与四线法的科学探秘

    。这场微观世界的战役中,两线法与四线法如同矛与盾的博弈,共同书写着人类对精准测量的永恒追求。青铜时代的智慧:两线法的朴素哲学欧姆定律的原始实践1827年,乔治·西
    的头像 发表于 09-15 09:56 1232次阅读
    电阻测量技术的双生花:两线法与四线法的科学探秘

    直流分流器的检定测试怎么做

    你知道吗?电动车充电计费精确性依赖于精密的电流测量,而其背后藏着一位”隐形功臣”——直流分流器!这个看似简单的精密电阻器件,却在新能源汽车、光伏电站等关键领域扮演着不可或缺的角色。它基于欧姆定律工作,通过测量已知电阻上的电压降,就能精准推算出电流大小。
    的头像 发表于 09-04 14:08 647次阅读

    FOSAN 富捷科技揭秘:电阻公式的 “硬核逻辑”—— 从欧姆定律到 TCR 如何守护设备稳定?

    在电子电路的复杂网络中,电阻是调控电流的 “核心枢纽”,而描述其特性的公式则是解码这一元件的 “关键密码”。从基础的欧姆定律到温度系数计算,这些公式不仅是理论推导的结晶,更是工程实践中解决问题的核心
    的头像 发表于 09-02 18:03 1046次阅读
    FOSAN 富捷科技揭秘:电阻公式的 “硬核逻辑”—— 从<b class='flag-5'>欧姆定律</b>到 TCR 如何守护设备稳定?

    超越欧姆定律:全自动绝缘电阻率测试仪的高精度采样与信号处理技术探秘

    在材料电性能测评领域,当面对超越欧姆定律的复杂场景时,全自动绝缘电阻率测试仪的高精度采样与信号处理技术成为关键支撑,打破了传统测量的局限。​ 高精度采样技术是其核心优势之一。传统仪器在面对微弱或动态
    的头像 发表于 08-25 09:36 501次阅读
    超越<b class='flag-5'>欧姆定律</b>:全自动绝缘电阻率测试仪的高精度采样与信号处理技术探秘

    电阻公式如何保障电子设备稳定运行

    在电子的复杂网络中,电阻是调控电流的“守门人”,而描述其特性的公式则是理解这一元件的“金钥匙”。从基础的欧姆定律到温度系数计算,这些公式不仅是理论推导的产物,更是工程实践中解决问题的核心工具,支撑着从简单电路到精密电子设备的设计与运行。
    的头像 发表于 08-11 09:38 1026次阅读
    电阻公式如何保障电子设备稳定运行

    法拉电容的放电电流怎么计算的

    法拉电容放电电流计算基于基尔霍夫电压定律欧姆定律。线性放电阶段和非线性放电阶段分别计算平均放电电流和电流。自放电与外电路放电的区别在于释放能量的途径和效率。
    的头像 发表于 07-01 09:38 3322次阅读
    法拉电容的放电电流怎么计算的

    泰克科技如何攻克电流检测电阻的高频失真难题

    在开关电源、电机驱动和射频系统中,>1MHz的电流测量精度直接决定系统性能。传统方案依赖电流互感器(CT)或霍尔传感器,却常受限于相位漂移、磁饱和和带宽瓶颈。而基于欧姆定律的分流电阻(CVR)因直接
    的头像 发表于 06-23 15:19 1103次阅读
    泰克科技如何攻克电流检测电阻的高频失真难题

    石墨电极电阻率测定仪如何精准测量焦炭电阻

    会通过两个特定的电流电极,向焦炭样品中通入已知大小的电流。与此同时,另外两个电压电极则紧密配合,精准测量样品上产生的电位差。在整个测量过程中,欧姆定律成为了关键的理论依据。根据欧姆定律,电阻等于电位差与电流的
    的头像 发表于 03-12 13:25 537次阅读
    石墨电极电阻率测定仪如何精准测量焦炭电阻

    开关电源具备哪些保护功能

    当输出电流超过设定的安全阈值时,过流保护电路会被触发。这通常是通过检测输出电流大小来实现的,例如在电源输出线路中串联一个小阻值的采样电阻,利用欧姆定律,通过检测采样电阻两端的电压来获取电流信息。一旦检测到过流,电源会采取措施限制电流进一步增大。
    的头像 发表于 02-10 15:46 1412次阅读

    电气原理与电路分析 电气原理中的欧姆定律

    一、引言 电气原理是电气工程和电子工程领域的基础理论,它涉及电流、电压、电阻等基本概念以及它们之间的关系。在这些概念中,欧姆定律无疑是最为核心和基础的一个。欧姆定律揭示了电流、电压和电阻之间的定量
    的头像 发表于 02-01 10:29 2430次阅读

    分压器的工作原理

     分压器是一种电路元件,其工作原理基于欧姆定律和电压分配法则。分压器通常由两个或更多个电阻(或其他元件,如电容器)串联而成,用于将输入电压分配到输出端。以下是分压器工作原理的详细解释:
    的头像 发表于 01-28 13:50 3283次阅读

    电工常用的计算公式

    电工常用的计算公式,帮助大家更好地理解和解决这些问题。 1、欧姆定律、焦耳定律、电功率、电能 首先,我们来看看欧姆定律欧姆定律是电学的基础定律
    的头像 发表于 01-21 09:32 2701次阅读
    电工常用的计算公式

    分流器工作的原理与效率

    分流器的工作原理与效率是两个紧密相关但有所区别的概念。以下是对这两个方面的介绍: 一、分流器的工作原理 分流器的工作原理主要基于欧姆定律和分流原理。欧姆定律指出,流过电阻的电流与电阻两端电压成正比
    的头像 发表于 01-20 09:23 2828次阅读

    电流传感器的分类和特点

    电流传感器根据原理可以分为 分流器:根据欧姆定律用一个阻值很小的电阻测量其电压的变化来检测电流的大小,分流器因其简单易用和成本优势和出色的线性度而到欢迎,比如低压步进驱动上可以广泛看到。缺点是检测
    的头像 发表于 01-03 11:39 730次阅读