ADC规格参数/分析 - 利用热电偶和ADC实现高精度温度测量

来源:电子发烧友网 作者:灰色天空2012年03月06日 15:06
[导读] ADC规格参数/分析 表3所示为MAX11200的基本性能指标,具有图4中所示的电路特性。 表3. MAX11200的主要技术指标 MAX11200 Comments Sample Rate (sps) 10 to 120 The MAX11200s
ADC规格参数/分析

表3所示为MAX11200的基本性能指标,具有图4中所示的电路特性。

表3. MAX11200的主要技术指标
  MAX11200 Comments
Sample Rate (sps) 10 to 120 The MAX11200's variable oversampling rate can be optimized for low noise and for -150dB line-noise rejection at 50Hz or 60Hz.
Channels 1 GPIOs allow external multiplexer control for multichannel measurements.
INL (ppm, max) ±10 Provides very good measurement linearity.
Offset Error (µV) ±1 Provides almost zero offset measurements.
Noise-Free Resolution (Bits) 19.0 at 120sps; 19.5 at 60sps; 21.0 at 10sps Very high dynamic range with low power.
VDD (V) AVDD (2.7 to 3.6)

DVDD (1.7 to 3.6)
AVDD and DVDD ranges cover the industry's popular power-supply ranges.
ICC (µA, max) 300 Highest resolution per unit power in the industry; ideal for portable applications.
GPIOs Yes Allows external device control, including local multiplexer control.
Input Range 0 to VREF, ±VREF Wide input ranges
Package 16-QSOP,

10-µMAX® (15mm²)
Some models like the MAX11202 are offered in a 10-µMAX package—a very small size for space-constrained designs.

本文中使用的MAX11200是一款低功耗、24位、Σ-Δ ADC,适合于需要宽动态范围、高分辨率的低功耗应用。利用该ADC,基于式3和4可计算图3电路的温度分辨率。
Equation 3. (式3)
Equation 4. (式4)
式中:
Rtlsb为热电偶在1 LSB时的分辨率;
Rtnfr为热电偶无噪声分辨率(NFR);
VREF为基准电压;
Tcmax为测量范围内的热电偶最大温度;
Tcmin为测量范围内的热电偶最小温度;
Vtmax为测量范围的热电偶最大电压;
Tcmax为测量范围内的热电偶最小电压;
FS为ADC满幅编码,对于双极性配置的MAX11200为(223-1);
NFR为ADC无噪声分辨率,对于双极性配置的MAX11200为(220-1),10Sa/s时。

表4所列为利用式3和4计算表1中K型热电偶的测量分辨率。

表4. K型热电偶在不同温度范围内的测量分辨率
Temperature Range (°C) -200 to 0 0 to 500 500 to 1372
Voltage Range (mV) -5.891 20.644 34.242
Rtlsb Resolution (°C/LSB) 0.0121 0.0087 0.0091
Rtnfr Resolution (°C/NFR) 0.0971 0.0693 0.0729

表4中提供了每个温度范围内的°C/LSB误差和°C/NFR误差计算值。无噪声分辨率(NFR)表示ADC能够可靠区分的最小温度值。对于整个温度范围,NFR值低于0.1°C,对于工业和医疗应用中的大多数热电偶远远足够。

热电偶与MAX11200评估板的连接

MAX11200EVKIT提供了全功能、高分辨率DAS。评估板可帮助设计工程师快速完成项目开发,例如验证图4所示解决方案。

在图4所示原理图中,常见的K型OMEGA热电偶(KTSS-116 [5])连接至差分评估板输入A1。利用Maxim应用笔记4875中介绍的高性价比比例方案,测量冷端温度的绝对值[3]。R1 (PT1000)输出连接至评估板输入A0。MAX11200的GPIO控制精密多路复用器MAX4782,复用器动态选择将热电偶或PRTD R1输出连接至MAX11200的输入。

K型热电偶(图3、4)在-50°C至+350°C范围内的线性度适当。对于有些不太严格的应用,线性逼近公式(式5)能大大降低计算量和复杂度。

近似绝对温度可计算为:
Equation 5. (式5)
式中:
E为实测热电偶输出,单位为mV;
Tabs为K型热电偶的绝对温度,单位为°C;
Tcj为PT1000实测的热电偶冷端温度,单位为°C [3];
Ecj为利用Tcj计算得到的冷端热电偶等效输出,单位为mV。

所以:
k = 0.041mV/°C——从-50°C至+350°C范围内的平均灵敏度

然而,为了在更宽的温度范围(-270°C至+1372°C)内精密测量,强烈建议采用多项式(式2)和系数(根据NIST ITS-90):
Tabs = ƒ(E + Ecj) (式6)
式中:
Tabs为K型热电偶的绝对温度,单位为°C;
E为实测热电偶输出,单位为mV;
Ecj为利用Tcj计算得到的冷端热电偶等效输出,单位为mV;
f为式2中的多项式函数;
TCOLD为PT1000实测的热电偶的冷端温度,单位为°C。

图7所示为图4的开发系统。该系统包括经认证的精密校准器,Fluke®-724,作为温度模拟器代替K型OMEGA热电偶。

图7. 图4开发系统
详细图片(PDF, 3.1MB)
图7. 图4开发系统

Fluke-724校准器提供与K型热电偶在-200°C至+1300°C范围内输出相对应的精密电压,送至基于PT1000的冷端补偿模块。基于MAX11200的DAS动态选择热电偶或PRTD测量值,并通过USB端口将数据送至笔记本计算机。专门开发的DAS软件采集并处理热电偶和PT1000输出产生的数据。

表5列出了-200°C至+1300°C温度范围内的测量和计算值,采用式5和6。

表5. -200°C至+1300°C范围的测量计算
Temperature (Fluke-724) (°C) PT1000 Code Measured at "Cold Junction" (LSB) Thermocouple Code Adjusted to 0°C by PT1000 Measurements (LSB) Temperature Calculated by Equation 6 and Table 2 (°C) Temperature Error vs. Calibrator (°C) Temperature Calculated by "Linear" Equation 5 (°C)
-200 326576 -16463 -199.72 0.28 -143.60
-100 326604 -9930 -99.92 0.08 -86.62
-50 326570 -5274 -50.28 -0.28 -46.01
0 326553 6 0.00 0.00 0.05
20 326590 2257 20.19 0.19 19.68
100 326583 11460 100.02 0.02 99.96
200 326486 22779 200.18 0.18 198.69
500 326414 57747 500.16 0.16 503.70
1000 326520 115438 1000.18 0.18 1006.92
1300 326544 146562 1300.09 0.09 1278.40

如表5所示,利用式6,基于MAX11200的DAS系统在非常宽的温度范围内可达到±0.3°C数量级的精度。式5中的线性逼近法在很窄的-50°C至+350°C范围内仅能实现1°C至4°C的精度。

注意,式6需要相对复杂的线性化计算算法。

大约十年之前,在DAS系统设计中实现此类算法会受到技术和成本的限制。当今的现代化处理器速度快、性价比高,解决了这些难题。

总结

最近几年,适用于-270°C至+1750°C温度范围的高性价比、热电偶温度检测技术取得较大进展。在改进温度测量和范围的同时,成本也更加合理,功耗更低。

如果ADC和热电偶直接连接,这些基于热电偶的温度测量系统需要低噪声ADC (如MAX11200)。热电偶、PRTD和ADC集成至电路时,能够实现非常适用于便携式检测应用的高性能温度测量系统。

MAX11200具有较高的无噪声分辨率、集成缓冲器和GPIO驱动器,可直接连接任何传统的热电偶及高分辨率PRTD (如PT1000),无需额外的仪表放大器或专用电流源。更少的接线和更低的热误差进一步降低系统复杂性和成本,使设计者能够实现DAS与热电偶及冷端补偿模块的简单接口。
上一页1234

本文导航

相关阅读

发表评论
技术交流、积极发言! 发表评请遵守相关规定。

0 条评论

推荐阅读

每月人物

依托AI平台,涂鸦智能开启全屋智能2.0时代!

依托AI平台,涂鸦智能开启全屋智能2.0时代!
随着物联网技术的突飞猛进,生活中越来越多的家庭设备将会联上网络,变得“智慧”起来,智慧家庭的概念成了这几年媒体、企业、用户关注的焦点,而...

发力IoT边缘智能服务,研华以平台服务与边缘智能计算打开物联网应用之门

发力IoT边缘智能服务,研华以平台服务与边缘智能计算打开物联网
研华IoT嵌入式平台事业群总经理许杰弘表示,工业物联网 2009年就开始提出,至今缺乏临门一脚,现在是打开大门的时候了。研华WISE-PaaS物智联软件平台和...

每周排行

  • 型 号
  • 产品描述