0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

谷歌将AutoML应用于Transformer架构,翻译结果飙升!

DPVg_AI_era 来源:YXQ 2019-06-16 11:29 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

为了探索AutoML在序列域中的应用是否能够取得的成功,谷歌的研究团队在进行基于进化的神经架构搜索(NAS)之后,使用了翻译作为一般的序列任务的代理,并找到了Evolved Transformer这一新的Transformer架构。Evolved Transformer不仅实现了最先进的翻译结果,与原始的Transformer相比,它还展示了语言建模的改进性能。

自几年前推出以来,Google的Transformer架构已经应用于从制作奇幻小说到编写音乐和声的各种挑战。重要的是,Transformer的高性能已经证明,当应用于序列任务(例如语言建模和翻译)时,前馈神经网络可以与递归神经网络一样有效。虽然用于序列问题的Transformer和其他前馈模型越来越受欢迎,但它们的架构几乎完全是手动设计的,与计算机视觉领域形成鲜明对比。AutoML方法已经找到了最先进的模型,其性能优于手工设计的模型。当然,我们想知道AutoML在序列域中的应用是否同样成功。

在进行基于进化的神经架构搜索(NAS)之后,我们使用翻译作为一般的序列任务的代理,我们找到了Evolved Transformer,这是一种新的Transformer架构,它展示了对各种自然语言处理(NLP)任务的有希望的改进。Evolved Transformer不仅实现了最先进的翻译结果,而且与原始的Transformer相比,它还展示了语言建模的改进性能。我们是将此新模型作为Tensor2Tensor的部分发布,它可用于任何序列问题。

开发技术

要开始进化NAS,我们有必要开发新技术,因为用于评估每个架构的“适应性”的任务——WMT'14英语-德语翻译——计算量很大。这使得搜索比在视觉领域中执行的类似搜索更加昂贵,这可以利用较小的数据集,如CIFAR-10。

这些技术中的第一种是温启动——在初始进化种群中播种Transformer架构而不是随机模型。这有助于在我们熟悉的搜索空间区域中进行搜索,从而使其能够更快地找到更好的模型。

第二种技术是我们开发的一种称为渐进动态障碍(PDH)(Progressive Dynamic Hurdles)的新方法,这种算法增强了进化搜索,以便为最强的候选者分配更多的资源,这与先前的工作相反,其中NAS的每个候选模型被分配相同的评估时的资源量。如果模型明显不好,PDH允许我们提前终止对模型的评估,从而使有前途的架构获得更多资源。

Evolved Transformer简介

使用这些方法,我们在翻译任务上进行了大规模的NAS,并发现了Evolved Transformer(ET)。与大多数序列到序列(seq2seq)神经网络体系结构一样,它有一个编码器,将输入序列编码为嵌入,解码器使用这些嵌入构造输出序列;在翻译的情况下,输入序列是要翻译的句子,输出序列是翻译。

演化变压器最有趣的特征是其编码器和解码器模块底部的卷积层,在两个地方都以类似的分支模式添加(即输入在加到一起之前通过两个单独的卷积层)。

Evolved Transformer与原始Transformer编码器架构的比较。注意模块底部的分支卷积结构,它独立地在编码器和解码器中形成。

这一点特别有趣,因为在NAS期间编码器和解码器架构不共享,因此独立发现该架构对编码器和解码器都很有用,这说明了该设计的优势。虽然最初的Transformer完全依赖于自我关注,但Evolved Transformer是一种混合体,利用了自我关注和广泛卷积的优势。

对Evolved Transformer的评估

为了测试这种新架构的有效性,我们首先将它与我们在搜索期间使用的英语-德语翻译任务的原始Transformer进行了比较。我们发现在所有参数尺寸下,Evolved Transformer具有更好的BLEU和 perplexity performance,拥有最大增益与移动设备兼容(约700万个参数),证明了参数的有效使用。在更大的尺寸上,Evolved Transformer在WMT'14 En-De上达到了最先进的性能,BLEU得分为29.8,SacreBLEU得分为29.2。

不同尺寸的WMT'14 En-DeEvolved Transformer与原Transformer的比较。性能的最大提高发生在较小的尺寸上,而ET在较大的尺寸上也显示出强度,优于最大的Transformer,参数减少37.6%(要比较的模型用绿色圈出)。

为了测试普遍性,我们还在其他NLP任务上将ET与Transformer进行了比较。首先,我们研究了使用不同语言对的翻译,发现ET表现提升,其边缘与英语-德语相似;再次,由于其有效使用参数,对于中型模型观察到了最大的提升。我们还比较了使用LM1B进行语言建模的两种模型的解码器,并且看到性能提升近2个perplexity。

未来工作

这些结果是探索体系结构搜索在前馈序列模型中应用的第一步。Evolved Transformer作为Tensor2Tensor的一部分已开源,在那里它可以用于任何序列问题。为了提高可重复性,我们还开源了我们用于搜索的搜索空间,以及实施渐进动态障碍的Colab。我们期待着看到研究团体用新模型做了什么,并希望其他人能够利用这些新的搜索技术!

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 谷歌
    +关注

    关注

    27

    文章

    6246

    浏览量

    110275
  • 开源
    +关注

    关注

    3

    文章

    4039

    浏览量

    45579

原文标题:谷歌将AutoML应用于Transformer架构,翻译结果飙升,已开源!

文章出处:【微信号:AI_era,微信公众号:新智元】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    Transformer如何让自动驾驶变得更聪明?

    ]自动驾驶中常提的Transformer本质上是一种神经网络结构,最早在自然语言处理里火起来。与卷积神经网络(CNN)或循环神经网络(RNN)不同,Transformer能够自动审视所有输入信息,并动态判断哪些部分更为关键,同时可以
    的头像 发表于 11-19 18:17 1937次阅读

    【「AI芯片:科技探索与AGI愿景」阅读体验】+第二章 实现深度学习AI芯片的创新方法与架构

    1.1RISC-VISA 扩展 1.2 向量协处理器 1.3 与各级存储耦合的NPU 1.4 针对Transformer 模型的架构优化 SwiftTron是一款专用的开源AI加速器,用于量化
    发表于 09-12 17:30

    自动驾驶中Transformer大模型会取代深度学习吗?

    [首发于智驾最前沿微信公众号]近年来,随着ChatGPT、Claude、文心一言等大语言模型在生成文本、对话交互等领域的惊艳表现,“Transformer架构是否正在取代传统深度学习”这一话题一直被
    的头像 发表于 08-13 09:15 3930次阅读
    自动驾驶中<b class='flag-5'>Transformer</b>大模型会取代深度学习吗?

    Transformer在端到端自动驾驶架构中是何定位?

    典型的Transformer架构已被用于构建“感知-规划-控制统一建模”的方案。如Waymo和小马智行正在研发的多模态大模型(MultimodalLargeModels,MLLMs),将来自摄像头
    的头像 发表于 08-03 11:03 1117次阅读

    【「DeepSeek 核心技术揭秘」阅读体验】第三章:探索 DeepSeek - V3 技术架构的奥秘

    一、模型架构 在阅读第三章关于 DeepSeek 的模型架构部分时,我仿佛打开了一扇通往人工智能核心构造的大门。从架构图中,能清晰看到 Transformer 块、前馈神经网络、注意力
    发表于 07-20 15:07

    Transformer架构中编码器的工作流程

    编码器是Transformer体系结构的基本组件。编码器的主要功能是输入标记转换为上下文表示。与早期独立处理token的模型不同,Transformer编码器根据整个序列捕获每个token的上下文。
    的头像 发表于 06-10 14:27 834次阅读
    <b class='flag-5'>Transformer</b><b class='flag-5'>架构</b>中编码器的工作流程

    Transformer架构概述

    由于Transformer模型的出现和快速发展,深度学习领域正在经历一场翻天覆地的变化。这些突破性的架构不仅重新定义了自然语言处理(NLP)的标准,而且拓宽了视野,彻底改变了AI的许多方面。
    的头像 发表于 06-10 14:24 973次阅读
    <b class='flag-5'>Transformer</b><b class='flag-5'>架构</b>概述

    谷歌打造通用AI助手的愿景

    在过去的十年中,我们为现代 AI 时代奠定了许多基础,从率先提出所有大型语言模型赖以构建的 Transformer 架构,到开发 AlphaGo 和 AlphaZero 等可以学习和规划的智能体系统。
    的头像 发表于 05-23 14:48 859次阅读

    AI SoC # 爱芯元智AX650N详细介绍:原生支持Transformer架构模型 适用部署DeepSeek R1

    和 18TOPs@INT8 ,原生支持Transformer架构模型,适用于CNN、LLM(如DeepSeek、Llama3、Qwen2.5)及多模态大模型(VLM)部署。 部署DeepS
    的头像 发表于 03-04 11:15 7256次阅读
    AI SoC # 爱芯元智AX650N详细介绍:原生支持<b class='flag-5'>Transformer</b><b class='flag-5'>架构</b>模型 适用部署DeepSeek R1

    如何使用MATLAB构建Transformer模型

    LanguageProcessing, NLP)中的序列到序列任务,如机器翻译Transformer 通过引入自注意力机制使得处理长距离依赖关系时变得高效。因此 Vaswani 等人的论文强调“注意力是所需的一切”。
    的头像 发表于 02-06 10:21 5765次阅读
    如何使用MATLAB构建<b class='flag-5'>Transformer</b>模型

    AI助力实时翻译耳机

    是一种能够实时一种语言翻译成另一种语言的耳机设备。它通常由一个耳机和一个配套的应用程序组成,用户可以通过应用程序选择需要翻译的语言,并通过耳机听到翻译
    的头像 发表于 01-24 11:14 3313次阅读
    AI助力实时<b class='flag-5'>翻译</b>耳机

    是否有专门应用于energy monitoring的高速ADC?

    TI是否有专门应用于energy monitoring的高速ADC(sensing up to 30 MHz for power quality analysis), 或者可以用于这个方案的ADC也可以?
    发表于 01-23 06:23

    transformer专用ASIC芯片Sohu说明

    2022年,我们打赌说transformer会统治世界。 我们花了两年时间打造Sohu,这是世界上第一个用于transformer(ChatGPT中的“T”)的专用芯片。
    的头像 发表于 01-06 09:13 1690次阅读
    <b class='flag-5'>transformer</b>专用ASIC芯片Sohu说明

    低噪声运放应用于微分器电路设计

    低噪声运放应用于微分器电路设计
    的头像 发表于 01-03 17:49 1053次阅读
    低噪声运放<b class='flag-5'>应用于</b>微分器电路设计

    应用于有源高通滤波电路的高速运放

    应用于有源高通滤波电路的高速运放
    的头像 发表于 12-27 15:58 739次阅读
    <b class='flag-5'>应用于</b>有源高通滤波电路的高速运放