0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

利用AI技术,改善对患者肾脏的长期预后预测

DPVg_AI_era 来源:lq 2019-05-25 10:27 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

IgA肾病的长期预后风险预测一直是医学界的难题。近日,中国学者在肾脏病顶级期刊《美国肾脏病杂志》(AJKD) 上发表论文,介绍了如何利用AI技术,改善对IgA肾病的长期预后风险预测。这是全球第一篇发表在肾脏病顶级期刊上的AI疾病预测论文。

中国大约有1.2亿慢性肾病(CKD)患者。其中有一种最常见的肾病,它的病因尚不完全清楚,且其远期预后非常不理想。它就是 IgA 肾病(IgA nephropathy,IgAN),是全球范围内发病率最高的原发性肾小球疾病之一,在亚洲人群中发病率尤高。

IgA肾病的远期预后不佳,10‑25 年内 30‑40% 的患者会进入终末期肾病(肾衰竭)。终末期肾病患者通常需要进行透析或肾移植治疗,人均治疗花费10-15万元/年,这给个人、家庭和社会带来了沉重的负担。因此,如何准确地对IgA肾病患者的预后风险进行预测,对于指导患者的个体化预防、治疗和管理,以及相关临床研究具有重要的意义。

近日,国家肾脏疾病临床医学研究中心(东部战区总医院)、平安医疗科技、IBM中国研究院联合在肾脏病顶级期刊《美国肾脏病杂志》(AJKD)上发表论文《IgA肾病的肾脏终点预测和风险分层》,介绍了如何利用 AI 技术,改善对IgA肾病的长期预后风险预测。陈听雨、李响、李映雪、夏尔玉、秦勇、梁少姗、徐峰、梁丹丹、曾彩虹、刘志红等人是论文的贡献者。

研究人员将 AI 算法与统计分析方法相结合,建立了一套精准、可解释、临床实用的 IgA 肾病患者预后风险预测系统。据悉,这是全球第一篇发表在肾脏病顶级期刊上的 AI 疾病预测论文。

长期随访患者数据,机器学习方法构建模型

既往研究发现影响 IgAN 预后的多项危险因素,包括基线尿蛋白 > 1g/d、高血压、肾功能不全、高尿酸血症、男性、严重病理评分等,并在此基础上建立了多种预测 IgAN 预后的评分系统,但这些评分系统受制于样本量小,病理评分标准不一, 纳入特征少以及评分临床实用性欠佳等缺点。

本文致力于使用2047 例中国长期随访 IgAN 患者数据,借助机器学习方法,建立结合临床及肾脏病理的预后风险预测模型及风险分层系统,使医生可快速准确地预估患者的肾脏预后风险。

数据及实验设计:

回顾性分析采用来自中国 18 个临床中心的 1997 年 1 月~2010 年 6 月住院经肾活检确诊为 IgAN 患者的临床及随访资料。数据涵盖了患者的人口学特征、生理指标、病理指标等36个变量。临床结局定义为 “eGFR 较基线下降≥50% 或 终末期肾病(end-stage kidney disease, ESKD)” 。

根据以上研究对象及观察指标建立的预测模型,可以在患者活检时预测以上临床结局的风险,预测时间窗口为活检后 5 年。

AI融合统计模型,兼顾模型精准度和实用性

XGBoost精准预测:

本文首先使用XGBoost方法进行了建模。

目前为止,XGBoost 方法在中小型结构 / 表格数据上已取得了无数卓越的成绩。其作为一种基于决策树的集成机器学习算法,使用梯度上升框架,适用于分类回归问题,速度快,效果好。

本文选取 XGBoost 作为预测模型,除了其精准的预测能力外,还有一个更重要的原因,即 XGBoost自动处理缺失值的能力。缺失值在医疗数据中一直是个无法避免又棘手的问题。由于大部分机器学习模型都需要较多的变量作为输入,在实际临床应用时很难将所需变量搜集完整。这一点阻挠了机器学习算法在临床实践中的广泛应用。XGBoost 方法自动学习缺失值的分类方向,从而摆脱了在实际应用时缺失值造成的束缚。

本文输出了重要性排名前十的变量(如下表)。在 NJIgAN‑RSS 系统中,用户可以根据实际情况填入这些变量的信息,获取预测的风险概率。

Stepwise Cox 简化评分:

为了进一步增强系统在临床实践中的实用性,本文进一步构建了无需借助计算机便能使用的打分模型。

Stepwise Cox 作为一种传统的回归分析模型,每个被选择的变量都有一危险比(hazard ratio,HR),其统计学显著性可用 p 值来评估,临床解释性能佳,故本文利用该方法建立简化评分模型。

Stepwise Cox 在建模过程中自动进行特征选择,但由于其采用的逐步递归特征选择非常容易陷入局部最优解,所以直接基于原始的 36 个变量进行建模所得到的模型效果并不理想。

本文基于了 XGBoost 给出的对于模型分类效果具有显著作用的 10 个变量作为初始变量,在此基础上进行Cox 回归建模, 从一定程度上减小了局部最优带来的弊端。

本文通过 CHAID 方法进一步将 stepwise Cox 选出的变量进行离散化,将 Cox 回归系数作为打分模型权重,得到了最后的打分模型。打分最终纳入了 3 个变量:肾小管萎缩/间质性纤维化比例(%) (基于牛津分型分为 T1;T2)、球性硬化比例>25%、尿蛋白>1g/d, 最终将患者 3 个变量对应的得分相加,即得到患者的风险分层评分(risk stratification score,RSS),进一步将 0‑1 分为低危组,2 分为中危组,3‑4 分为高危组。

模型评价结果

XGBoost 模型在训练集及验证集上的 C‑statistics 分别为 0.89、0.84。本文对比了 XGBoost 以及其他机器学习、统计方法的区分度性能,如下表。

简化版评分模型在训练集上的 C‑statistic为 0.81 (95% CI, 0.76‑0.86),验证集为 0.80 (95% CI, 0.75‑0.84)。现有评分模型ARR 在本文训练集上的 C‑statistic为 0.71 (95% CI, 0.65‑0.77),验证集为 0.74 (95% CI, 0.69‑ 0.78)。可见,本文所建立的评分模型与现有模型相比,在预测精准度上具有显著的提高。

模型一致性结果如下图所示,Hosmer‑Lemeshow 检验所得统计值 1.144,p‑value=0.8,说明此模型一致性结果较高。

下图展示了风险得分为 0‑4 分人群的 Kaplan‑ Meier 曲线(ESKD 及联合结局)。Log‑rank test 的结果(P < 0.001)说明发现利用本文的评分模型对 IgA 肾病病人的预后风险进行了很好的分层。

结论

本文建立了 IgAN 患者的肾脏预后风险预测系统 NJIgAN‑RSS,包含了精准的 XGBoost 概率预测模型以及简化版的 SSM打分模型,并对其进行了外部验证。与现有的 ARR 模型相比取得了更加精准的预测性能。该项研究推动了 AI 算法在疾病预测方面的应用。

NJIgAN‑RSS 系统已在网上公开发布(http://njszb. gdpcloud.com/),用户输入各项参数后,便可获得患者五年内的预后风险概率以及风险等级。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 论文
    +关注

    关注

    1

    文章

    103

    浏览量

    15372
  • ai技术
    +关注

    关注

    1

    文章

    1313

    浏览量

    25598

原文标题:中国学者顶级期刊发文:AI精准预测肾病预后

文章出处:【微信号:AI_era,微信公众号:新智元】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    华为发布AI容器技术Flex:ai,算力平均利用率提升30%

    电子发烧友网综合报道 2025年11月21日,在上海举办的“2025 AI容器应用落地与发展论坛”上,华为正式发布并开源了创新AI容器技术Flex:ai,为解决算力资源
    的头像 发表于 11-26 08:31 7118次阅读

    AMD助力Medilit开发AI医疗记录解决方案

    Medilit 意识到医疗专业人员在患者护理和文档记录方面投入颇多。AI Scribe( AI 记录助手)通过简化工作流程并提高效率,改善了医生的日常诊疗安排。该解决方案使医生能够接诊
    的头像 发表于 10-27 15:33 3826次阅读

    AI赋能6G与卫星通信:开启智能天网新时代

    展示的AI网络优化系统中,AI成功预测了大型活动的流量高峰,提前30分钟动态调整基站资源,确保了100万用户同时在线的流畅体验,网络延迟保持在1毫秒以下。 这种网络优化能力,使6G网络的资源
    发表于 10-11 16:01

    如何能更好地预测和评估座椅的长期乘坐疲劳度

    长期乘坐疲劳度的精准预测与评估,离不开专业的测试设备、场景模拟能力与数据解析技术。北京沃华慧通测控技术有限公司作为汽车测试领域的资深服务商,可为车企提供 “全周期、定制化” 的座椅
    的头像 发表于 10-10 09:05 186次阅读
    如何能更好地<b class='flag-5'>预测</b>和评估座椅的<b class='flag-5'>长期</b>乘坐疲劳度

    【「AI芯片:科技探索与AGI愿景」阅读体验】+AI的科学应用

    主要步骤: ①溯因②假说③实验 1、科学推理的类型 ①演绎②归纳 2、自动化科学发现框架 AI-笛卡儿-----自动化科学发现框架,利用数据和知识来生成和评估候选的科学假说。 4项规则:三、直觉
    发表于 09-17 11:45

    任正非说 AI已经确定是第四次工业革命 那么如何从容地加入进来呢?

    实践。 为开源项目贡献代码或者文档。比如,帮助完善一个机器学习数据集的加载模块的代码,或者撰写某个AI算法的使用说明文档。这不仅可以提升自己的技术能力,还能在AI社区中建立自己的声誉。 个人项目实践
    发表于 07-08 17:44

    全球各大品牌利用NVIDIA AI技术提升运营效率

    欧莱雅、LVMH 集团和雀巢利用 NVIDIA 加速的智能体 AI 和物理 AI,大幅提升产品设计、营销及物流等方面的运营效率。
    的头像 发表于 06-19 14:36 962次阅读

    华为依托昇腾AI打造蛋白结构预测工具

    蛋白质结构预测一直是“21世纪的生物物理学”最重要的课题之一,北京昌平实验室联合伙伴基于全场景AI框架“昇思MINDSPORE”开发的蛋白质结构预测模型在CAMEO竞赛拿下第一并霸榜四周,填补了中国
    的头像 发表于 03-03 13:52 849次阅读

    FPGA+AI王炸组合如何重塑未来世界:看看DeepSeek东方神秘力量如何预测......

    、关于FPGA的未来——“无限可能的未来世界” AI时代的FPGA未来前景如何?FPGA+AI如何重塑未来芯片生态? 看看大聪明DeepSeek如何预测FPGA的前景......1. FPGA
    发表于 03-03 11:21

    研华科技利用DeepSeek大模型打造医疗AI智能助手

    AI技术的应用成为医疗行业突破困境的关键。DeepSeek作为近期持续霸榜的AI应用平台,其开源属性和强大的技术能力,正在深刻改变医疗行业的运作模式。通过智能化手段,不仅可以提高医疗服
    的头像 发表于 02-20 09:40 1779次阅读
    研华科技<b class='flag-5'>利用</b>DeepSeek大模型打造医疗<b class='flag-5'>AI</b>智能助手

    AI赋能边缘网关:开启智能时代的新蓝海

    ,准确率达到99.9%。 这一技术革新正在创造巨大的商业价值。在智慧城市领域,AI边缘网关可以实现交通流量实时分析、违章行为智能识别;在工业互联网中,能够实现设备预测性维护、生产工艺优化;在智慧能源领域
    发表于 02-15 11:41

    AI技术与PLC编程融合

    如何将AI技术融入PLC编程软件
    发表于 02-14 15:55

    Gartner预测AI将重塑销售行业格局

    市场调查机构Gartner近日发布了一项重要预测,指出AI(人工智能)的普及将对销售行业产生深远影响。随着AI技术的不断发展,销售人员的技能需求、客户需求以及销售策略都将发生显著变化
    的头像 发表于 02-14 11:10 999次阅读

    AI基础模型提升癌症诊断精确度,实现个性化治疗方案定制

    斯坦福大学研究人员正在通过一项新研究和一个新 AI 模型简化癌症诊断、治疗规划和预后预测。这项名为“多模态统一掩码建模 Transformer”(MUSK)的研究旨在推进精准肿瘤学的发展,以便根据
    的头像 发表于 02-11 09:22 1205次阅读
    <b class='flag-5'>AI</b>基础模型提升癌症诊断精确度,实现个性化治疗方案定制

    英国将试用AI工具提前预测糖尿病风险

    近日,据最新报道,英国计划在2025年启动一项创新的人工智能(AI)工具试验,旨在提前预测2型糖尿病的患病风险。这款名为“人工智能-心电图糖尿病风险评估”的工具,能够在患者实际罹患糖尿病前的13年
    的头像 发表于 12-27 10:26 1495次阅读