0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

AI读心重磅突破登Nature!大脑信号1秒被看穿,还能预测未来画面

颖脉Imgtec 2023-05-12 10:32 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

来源:新智元


导读

最近,来自洛桑联邦理工学院的研究团队提出了一种全新的方法,可以用AI从大脑信号中提取视频画面。论文已登Nature,却遭网友疯狂「打假」。

现在,AI不仅会读脑,还会预测下一个画面了!

利用AI,一个研究团队「看见」了老鼠眼中的电影世界。

更神奇的是,这种机器学习算法,还能揭示大脑记录数据中隐藏的结构,预测复杂的信息,比如老鼠会看到的东西。

给一段上世纪60年代黑白老电影中截取的视频画面:一个男子向汽车跑去,打开了后备箱。

小鼠看过电影片段后,AI通过分析其脑部数据,竟把画面重构出来了。

11126b06-efa0-11ed-ba01-dac502259ad0.gif

可以说,几乎与电影原作一致,是不是很神奇?

近日,来自瑞士洛桑联邦理工学院的团队在Nature上提出了一种名为CEBRA的最新算法,就把AI读脑给实现了。

最最最重要的是,准确率超过了95%!

论文地址:https://www.nature.com/articles/s41586-023-06031-6

这一人工神经网络模型仅用了三步,首先分析和解释行为/神经数据,然后解码来自视觉皮层的活动,最后重建观看的视频。

CEBRA的意义在于,能够对来自视觉皮层的视频进行快速、高精度的解码,这对于理解人类大脑活动来说,意义重大。

网友调侃,各地的思想犯罪指数,会怎么样?


CEBRA,从小鼠的大脑信号中预测电影

此前,这种「AI读脑术」就曾在网上引发轩然大波。

一篇CVPR2023论文称,Stable Diffusion已经能重建大脑视觉信号了。

AI看了一眼人脑信号后,立马就给出下面这样的结果。

而在这次的研究中,科学家们更进了一步,新算法构建的人工神经网络模型,不仅能捕捉大脑动态、准确地重构画面,还能预测出小鼠能看到的东西。

另外,它还可以用来预测灵长类动物手臂的运动,重建老鼠在场地中自由奔跑的位置。

这种新型的机器学习算法名为CEBRA (与zebra同音) ,能够学习神经代码中的隐藏结构。

为了了解小鼠视觉系统中的隐藏结构,CEBRA可以在一个初始的训练阶段后,直接从大脑信号中预测看不见的电影画面,绘制大脑信号和电影特征。

具体来说,CEBRA是基于对比学习实现的一种机器学习算法。

CEBRA提供了三种不同的模式:1 假设驱动模式 2 发现驱动模式 3 混合模式

它能够学习将高维数据排列或嵌入到一个称为隐空间(latent space)的「低维空间」中。

这样做就能够实现,相似的数据点紧密相连,而差异大的数据点就会进一步分离。

这种嵌入模式可用于推断数据中的隐藏关系和结构。它使研究人员能够同时考虑神经数据和行为标签,包括运动,抽象标签(如奖励),或感官特征(如图像颜色或纹理)。


老鼠「读脑术」

怎样将小鼠脑中的画面重现呢?

研究者召集了50只小鼠,让它们一起观看一段30秒的电影片段,并将这个过程重复了9次。

147d2d76-efa0-11ed-ba01-dac502259ad0.gif

在小鼠看电影时,研究者就会把探针插进小鼠的大脑视觉皮层区域,收集它们的神经元活动信号。这个过程,也就是我们熟悉的脑机接口(BMI)。

这个过程中用到的探针有两种:

一种是通过插入小鼠大脑视觉皮层区域的电极探针直接测量,另一种是通过光学探针在基因改造的小鼠中获取。这些光学探针经过改造,使激活的神经元发出绿光。

然后,研究者通过CEBRA,将这些神经信号与600帧电影片段联系起来,建立起两者之间的映射。

有了前面9次观看的记忆巩固加强后,研究人员又让小鼠观看第10次,并收集了这一次观看时的大脑活动数据。

基于这些大脑数据,研究人员测试了CEBRA在预测电影片段中画面顺序方面的能力。

结果发现,CEBRA能够在1秒内以95%的准确率预测下一个画面。


人类大脑,终极目标

将行为动作映射到神经活动,一直是神经科学的一个基本目标。

但是,研究者们一直缺乏可以灵活利用联合行为和神经数据揭示神经动力学的非线性技术,而CEBRA算法,填补了这一空缺。

而且,CEBRA还可以用于空间映射,从而揭示复杂的运动学特征,还能提供对来自视觉皮层的自然视频的快速、高精度的解码。

具体来说,研究者提出了一个联合训练的潜在嵌入框架。

CEBRA利用用户定义的标签或仅限时间的标签,获得了一致的神经活动嵌入,可用于可视化数据和解码之类的下游任务。

这个算法基于的对比学习,正是利用相互对比的样本(正样本和负样本)来找到共同属性和区分属性。

1558bef4-efa0-11ed-ba01-dac502259ad0.png

使用CEBRA实现一致且可解释的嵌入

CEBRA的优势就在于它的灵活性,以及有限假设和检验假设的能力。

对于海马体,可以假设这些神经元代表空间,因此行为标签可以是位置或速度(图2a)。

另外,还可以有一个替代假设:海马体不映射空间,而只是映射行进方向或其他一些特征。

157b0158-efa0-11ed-ba01-dac502259ad0.png

使用CEBRA的假设和发现驱动分析

论文一作Steffen Schneider称,与其他算法相比,CEBRA在重建合成数据方面表现出色,这对比较算法至关重要。

它的优势还在于,能够跨不同模式组合数据,比如电影特征和大脑数据。它还有助于限制细微差别,比如收集数据收集方式对导致数据变化。

1595a21a-efa0-11ed-ba01-dac502259ad0.png

从小鼠视觉皮层区域解码自然视频特征

「这项工作朝着神经技术实现高性能BMI所需的理论支持算法,又迈出了一步,」EPFL的Bertarelli综合神经科学主席兼该研究的PI Mackenzie Mathis说。

研究者称,CEBRA在视觉皮层只有不到1%的神经元的情况下表现良好。要知道小鼠的大脑大约有50万个神经元组成。

CEBRA的最终目标,是揭示复杂系统中的结构。由于大脑是我们宇宙中最复杂的结构,它是CEBRA的终极测试空间。

CEBRA还可以让我们了解大脑是如何处理信息的,并通过整合动物,甚至其他物种的数据,为发现神经科学的新原理提供一个平台。

当然,CEBRA算法并不仅限于神经科学研究,因为它可以应用于许多涉及时间或联合信息的数据集,包括动物行为和基因表达数据。因此,CEBRA潜在的临床应用令人兴奋。


网友质疑:这能叫读心术?

网友称,AI重现大脑画面的研究,这不是首次。

在11年,UC伯克利的一项研究使用功能磁共振成像(fMRI)和计算模型,初步重建了大脑的「动态视觉图像」。

也就是说,研究者重现了人类大脑看过的片段,但几乎是无法辨认。

不过,对于这项AI解析小鼠大脑信号、成功重构出观看的电影片段,网友纷纷表示质疑。

「我并非想贬低这项出色的工作,但这不是从老鼠看到的东西中创造视频,而是匹配哪一帧视频最符合模型解释当前帧的内容,所以......它不是产生视频数据,而是一个帧号,然后在屏幕上显示该帧。这个区别很微妙,但很重要。」

同样看过视频后的网友指出了问题——

「这个视频有点误导人。它并不像你看到所有这些扩散模型后所想的那样,完全从头开始构建。这个特定的模型只看过这个视频,并且只是将不同的帧映射到脑信号上。所以这并非是读心术。」

「这个说法是不准确的,并没有视频被生成。它只是在充分了解视频的情况下,预测了正在观看的视频的时间戳。」

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • AI
    AI
    +关注

    关注

    89

    文章

    38103

    浏览量

    296626
  • 机器学习
    +关注

    关注

    66

    文章

    8541

    浏览量

    136236
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    AI赋能6G与卫星通信:开启智能天网新时代

    展示的AI网络优化系统中,AI成功预测了大型活动的流量高峰,提前30分钟动态调整基站资源,确保了100万用户同时在线的流畅体验,网络延迟保持在1
    发表于 10-11 16:01

    【「AI芯片:科技探索与AGI愿景」阅读体验】+AI的科学应用

    AI赋予了人的智能,科学家们希望在没有人类的引导下,AI自主的提出科学假设,诺贝尔奖级别的假设哦。 AI驱动科学认为是科学发现的第五个范
    发表于 09-17 11:45

    当听诊器装上 “AI 大脑”,是谁在背后稳控 “生命信号”?

    分析人耳无法察觉的心跳和血流细微变化,还可同时快速完成心电图(ECG)检测。AI听诊器的“最强大脑”相较于传统听诊器,AI听诊器具备更清晰的监听声音以及更精准的心跳
    的头像 发表于 09-12 11:56 622次阅读
    当听诊器装上 “<b class='flag-5'>AI</b> <b class='flag-5'>大脑</b>”,是谁在背后稳控 “生命<b class='flag-5'>信号</b>”?

    【「AI芯片:科技探索与AGI愿景」阅读体验】+可期之变:从AI硬件到AI湿件

    生物化学计算机,它通过离子、分子间的相互作用来进行复杂的并行计算。因而未来可期的前景是AI硬件将走向AI湿件。 根据研究,估算出大脑的功率是20W,在进行智力活动时,其功率会增大到25
    发表于 09-06 19:12

    AI未来,属于那些既能写代码,又能焊电路的“双栖人才”

    信号AI真正的未来,不只属于“算法天才”,更属于那些既能写代码,又能焊电路的“双栖工程师”。无论是在AI芯片、智能终端、机器人、边缘计算还是大模型下沉的讨论中,我们不断听到同一个问
    发表于 07-30 16:15

    高达2070TFLOPS算力|腾视科技基于NVIDIA Jetson Thor系列模组,重磅推出全栈AI边缘智算大脑解决方案

    探索物理AI的无限可能。无论是硬件厂商、软件开发者,还是各行业的应用企业,让我们携手共进,利用腾视科技先进的全栈AI边缘智算大脑解决方案,推动机器人技术在更多领域的创新应用,共同打造物理AI
    的头像 发表于 07-28 16:48 1332次阅读
    高达2070TFLOPS算力|腾视科技基于NVIDIA Jetson Thor系列模组,<b class='flag-5'>重磅</b>推出全栈<b class='flag-5'>AI</b>边缘智算<b class='flag-5'>大脑</b>解决方案

    高达2070TFLOPS算力腾视科技基于NVIDIA Jetson Thor系列模组,重磅推出全栈AI边缘智算大脑解决方案

    探索物理AI的无限可能。无论是硬件厂商、软件开发者,还是各行业的应用企业,让我们携手共进,利用腾视科技先进的全栈AI边缘智算大脑解决方案,推动机器人技术在更多领域的创新应用,共同打造物理AI
    的头像 发表于 07-28 16:45 626次阅读
    高达2070TFLOPS算力腾视科技基于NVIDIA Jetson Thor系列模组,<b class='flag-5'>重磅</b>推出全栈<b class='flag-5'>AI</b>边缘智算<b class='flag-5'>大脑</b>解决方案

    【书籍评测活动NO.64】AI芯片,从过去走向未来:《AI芯片:科技探索与AGI愿景》

    发现从 “偶然突破” 走向 “可控产出”。 系统创新 这部分介绍了云端神经形态计算架构、超导与非超导低温类脑芯片、自旋波类脑芯片。这些技术让芯片运行模式更接近人类大脑,为低功耗、高智能AI奠定
    发表于 07-28 13:54

    飞腾软件支持平台即将正式上线AI智能大脑

    遇到棘手的技术问题却无人解答?搜索文档耗时长?飞腾软件支持平台即将正式上线AI智能大脑,让技术难题实现“回应”!
    的头像 发表于 06-13 11:37 840次阅读

    德施曼重磅发布五大突破性技术及多款重磅新品,开启AI智能管家时代

    志凌重磅发布了五大突破性技术,并带来多款重磅新品;来自全国各地的智能锁生态合作伙伴,行业知名机构、权威媒体现场见证了AI如何让智能家居更有灵性,德施曼如何以科技,
    的头像 发表于 04-23 20:59 821次阅读
    德施曼<b class='flag-5'>重磅</b>发布五大<b class='flag-5'>突破</b>性技术及多款<b class='flag-5'>重磅</b>新品,开启<b class='flag-5'>AI</b>智能管家时代

    DeepSeek预测TCL新品突破2万级分区,这次又要让同行望尘莫及?

    想打探TCL3月新品的消息,而AI给出的预测着实也让我挺震惊的!其中提到的TCL春季新品很可能在控光分区和峰值亮度上实现大突破倒是和我的想法不谋而合。至于这AI
    的头像 发表于 03-07 13:42 581次阅读
    DeepSeek<b class='flag-5'>预测</b>TCL新品<b class='flag-5'>突破</b>2万级分区,这次又要让同行望尘莫及?

    FPGA+AI王炸组合如何重塑未来世界:看看DeepSeek东方神秘力量如何预测......

    、关于FPGA的未来——“无限可能的未来世界” AI时代的FPGA未来前景如何?FPGA+AI如何重塑
    发表于 03-03 11:21

    Meta非入侵式脑机技术:AI读取大脑信号打字准确率80%

    脑机技术主要通过AI模型与特定硬件的结合,将用户的大脑信号映射成具体的键盘字符。该技术的准确率高达约80%,能够准确判断用户在“敲击”的按键,从而实现文字输入。 值得注意的是,这项设备完全依靠外部脑机读取用户的
    的头像 发表于 02-11 15:45 1028次阅读

    Meta AI推出Brain2Qwerty:非侵入性大脑信号转文本系统

    。 Brain2Qwerty系统主要依赖于非侵入性的技术手段来捕捉和解析大脑活动。具体而言,它结合了脑电图(EEG)和脑磁图(MEG)这两种先进的神经科学工具,以精确记录志愿者在思考过程中的大脑信号。 在研究过程中,Meta
    的头像 发表于 02-11 13:37 872次阅读

    超短阿脉冲产生领域新突破

    51阿,超短阿脉冲产生领域新突破1. 孤立阿脉冲产生与表征实验方案 在国家自然科学基金重大研究计划的支持下,国防科技大学理学院赵增
    的头像 发表于 12-10 10:48 1221次阅读
    超短阿<b class='flag-5'>秒</b>脉冲产生领域新<b class='flag-5'>突破</b>