0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

机器学习:快速精确预测电子结构问题

ExMh_zhishexues 来源:YXQ 2019-04-12 10:57 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

基于求解密度泛函理论(DFT)Kohn-Sham(KS)方程的模拟,已成为现代材料学和化学研究和开发组合过程的重要组成部分。尽管KS方程具有很强的普适性,但由于求解计算量很大,常规DFT计算一般只限于几百个原子。

来自佐治亚理工学院的RampiRamprasad领导的团队,报道了一种基于机器学习的方法,可以不直接求解KS方程而有效预测电子结构。该方法利用新的旋转不变表示,将格点周围的原子环境映射到该格点处的电子密度和局部态密度,并使用预先计算得到的带有几百万的格点信息的DFT结果来训练的神经网络来获得该映射。上述方法可以精确模拟实际求解KS方程的结果,但是速度快几个数量级。此外,由于该方法的计算量与系统尺寸严格成线性关系,因而有望用于大型体系的电子结构预测。

该文近期发表于Computational Materials5:22(2019)

Solving the electronic structure problem with machine learning

Anand Chandrasekaran, Deepak Kamal, Rohit Batra, Chiho Kim, Lihua Chen & Rampi Ramprasad

Simulations based on solving the Kohn-Sham (KS) equation of density functional theory (DFT) have become a vital component of modern materials and chemical sciences research and development portfolios. Despite its versatility, routine DFT calculations are usually limited to a few hundred atoms due to the computational bottleneck posed by the KS equation. Here we introduce a machine-learning-based scheme to efficiently assimilate the function of the KS equation, and by-pass it to directly, rapidly, and accurately predict the electronic structure of a material or a molecule, given just its atomic configuration. A new rotationally invariant representation is utilized to map the atomic environment around a grid-point to the electron density and local density of states at that grid-point. This mapping is learned using a neural network trained on previously generated reference DFT results at millions of grid-points. The proposed paradigm allows for the high-fidelity emulation of KS DFT, but orders of magnitude faster than the direct solution. Moreover, the machine learning prediction scheme is strictly linear-scaling with system size.

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 电子
    +关注

    关注

    32

    文章

    2003

    浏览量

    93125
  • 机器学习
    +关注

    关注

    66

    文章

    8541

    浏览量

    136273

原文标题:npj: 机器学习—快速精确预测电子结构问题

文章出处:【微信号:zhishexueshuquan,微信公众号:知社学术圈】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    机器视觉检测PIN针

    : 结合形态学处理、特征提取(如长宽比、面积)及深度学习(针对复杂缺陷),自动检出弯曲、断裂、变形、污染等。输出与控制:实时显示检测结果(OK/NG)及具体参数数值。生成检测报告,支持数据追溯。NG品自动剔除信号输出,无缝对接产线。了解更多机器视觉检测点击蓝字
    发表于 09-26 15:09

    贸泽电子2025边缘AI与机器学习技术创新论坛回顾(上)

    2025年,随着人工智能技术的快速发展,边缘AI与机器学习市场迎来飞速增长,据Gartner预计,2025年至2030年,边缘AI市场将保持23%的复合年增长率。
    的头像 发表于 07-21 11:08 1006次阅读
    贸泽<b class='flag-5'>电子</b>2025边缘AI与<b class='flag-5'>机器</b><b class='flag-5'>学习</b>技术创新论坛回顾(上)

    FPGA在机器学习中的具体应用

    随着机器学习和人工智能技术的迅猛发展,传统的中央处理单元(CPU)和图形处理单元(GPU)已经无法满足高效处理大规模数据和复杂模型的需求。FPGA(现场可编程门阵列)作为一种灵活且高效的硬件加速平台
    的头像 发表于 07-16 15:34 2655次阅读

    【「# ROS 2智能机器人开发实践」阅读体验】机器人入门的引路书

    的限制和调控) 本书还有很多前沿技术项目的扩展 比如神经网络识别例程,机器学习图像识别的原理,yolo图像追踪的原理 机器学习训练三大点: 先准备一个基本的模型
    发表于 04-30 01:05

    VirutualLab Fusion应用:结构光照明的显微镜系统

    摘要 与阿贝理论预测的分辨率相比,用于荧光样品的结构照明显微镜系统可以将显微镜系统的分辨率提高2倍。 VirutualLab Fusion提供了一种通过入射波属性来研究结构化照明模式的快速
    发表于 03-21 09:26

    华为依托昇腾AI打造蛋白结构预测工具

    蛋白质结构预测一直是“21世纪的生物物理学”最重要的课题之一,北京昌平实验室联合伙伴基于全场景AI框架“昇思MINDSPORE”开发的蛋白质结构预测模型在CAMEO竞赛拿下第一并霸榜四
    的头像 发表于 03-03 13:52 867次阅读

    机器学习模型市场前景如何

    当今,随着算法的不断优化、数据量的爆炸式增长以及计算能力的飞速提升,机器学习模型的市场前景愈发广阔。下面,AI部落小编将探讨机器学习模型市场的未来发展。
    的头像 发表于 02-13 09:39 640次阅读

    嵌入式机器学习的应用特性与软件开发环境

    作者:DigiKey Editor 在许多嵌入式系统中,必须采用嵌入式机器学习(Embedded Machine Learning)技术,这是指将机器学习模型部署在资源受限的设备(如微
    的头像 发表于 01-25 17:05 1244次阅读
    嵌入式<b class='flag-5'>机器</b><b class='flag-5'>学习</b>的应用特性与软件开发环境

    如何快速学习硬件电路

    对于想要学习硬件电路的新手来说,一开始可能感到有些困难,但只要掌握了正确的学习方法和技巧,就能够快速地成为一名优秀的硬件电路工程师。 首先,新手需要了解基本的电路知识,例如电阻、电容、电感等。这些
    的头像 发表于 01-20 11:11 1993次阅读
    如何<b class='flag-5'>快速</b><b class='flag-5'>学习</b>硬件电路

    开源项目!能够精确地行走、跳舞和执行复杂动作的机器人—Tillu

    学习者和爱好者的理想伙伴。 创新设计 Tillu的设计灵感来自广受欢迎的Otto DIY机器人,其设计过程包括在Fusion 360中进行CAD建模和精确的3D打印,以实现从坚固的伺服驱动腿部到模块化
    发表于 01-02 17:24

    传统机器学习方法和应用指导

    在上一篇文章中,我们介绍了机器学习的关键概念术语。在本文中,我们会介绍传统机器学习的基础知识和多种算法特征,供各位老师选择。 01 传统机器
    的头像 发表于 12-30 09:16 1993次阅读
    传统<b class='flag-5'>机器</b><b class='flag-5'>学习</b>方法和应用指导

    如何选择云原生机器学习平台

    当今,云原生机器学习平台因其弹性扩展、高效部署、低成本运营等优势,逐渐成为企业构建和部署机器学习应用的首选。然而,市场上的云原生机器
    的头像 发表于 12-25 11:54 710次阅读

    《具身智能机器人系统》第7-9章阅读心得之具身智能机器人与大模型

    医疗领域,手术辅助机器人需要毫米级的精确控制,书中有介绍基于视觉伺服的实时控制算法,以及如何利用大模型优化手术路径规划。工业场景中,协作机器人面临的主要挑战是快速适应新工艺流程。具身智
    发表于 12-24 15:03

    【「具身智能机器人系统」阅读体验】+初品的体验

    《具身智能机器人系统》 一书由甘一鸣、俞波、万梓燊、刘少山老师共同编写,其封面如图1所示。 本书共由5部分组成,其结构和内容如图2所示。 该书可作为高校和科研机构的教材,为学生和研究人员提供系统
    发表于 12-20 19:17

    如何在低功耗MCU上实现人工智能和机器学习

    人工智能 (AI) 和机器学习 (ML) 的技术不仅正在快速发展,还逐渐被创新性地应用于低功耗的微控制器 (MCU) 中,从而实现边缘AI/ML的解决方案。
    的头像 发表于 12-17 16:06 1308次阅读