0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

GPU如何加速人工智能或机器学习的计算速度

Dbwd_Imgtec 来源:cg 2019-01-08 15:01 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

一、Why GPU

其实GPU计算比CPU并不是“效果好”,而是“速度快”。

计算就是计算,数学上都是一样的,1+1用什么算都是2,CPU算神经网络也是可以的,算出来的神经网络放到实际应用中效果也很好,只不过速度会很慢罢了。

GPU的起源

GPU全称叫做graphics processing unit,图形处理器,顾名思义就是处理图形的。

电脑显示器上显示的图像,在显示在显示器上之前,要经过一些列处理,这个过程有个专有的名词叫“渲染”。以前的计算机上没有GPU,渲染就是CPU负责的。渲染是个什么操作呢,其实就是做了一系列图形的计算,但这些计算往往非常耗时,占用了CPU的一大部分时间。而CPU还要处理计算机器许多其他任务。因此就专门针对图形处理的这些操作设计了一种处理器,也就是GPU。这样CPU就可以从繁重的图形计算中解脱出来。

由于GPU是专门为了渲染设计的,那么他也就只能做渲染的那些事情。

渲染这个过程具体来说就是几何点位置和颜色的计算,这两者的计算在数学上都是用四维向量和变换矩阵的乘法,因此GPU也就被设计为专门适合做类似运算的专用处理器了。为什么说专用呢,因为很多事情他做不了。

CPU通用性强,但是专用领域性能低。工程就是折衷,这项强了,别的就弱了。再后来游戏、3D设计对渲染的要求越来越高,GPU的性能越做越强。论纯理论计算性能,要比CPU高出几十上百倍。

人们就想了,既然GPU这么强,那用GPU做计算是不是相比CPU速度能大大提升呢?于是就有了GPGPU(general purpose GPU,通用计算GPU)这个概念。但我们前面提到了,GPU是专门为了图像渲染设计的,他只适用于那些操作。但幸运的是有些操作和GPU本职能做的那些东西非常像,那就可以通过GPU提高速度,比如深度学习

深度学习中一类成功应用的技术叫做卷积神经网络CNN,这种网络数学上就是许多卷积运算和矩阵运算的组合,而卷积运算通过一定的数学手段也可以通过矩阵运算完成。这些操作和GPU本来能做的那些图形点的矩阵运算是一样的。因此深度学习就可以非常恰当地用GPU进行加速了。

以前GPGPU(通用GPU)概念不是很火热,GPU设计出来就是为了图形渲染。想要利用GPU辅助计算,就要完全遵循GPU的硬件架构。而现在GPGPU越来越流行,厂家在设计和生产GPU的时候也会照顾到计算领域的需求了。

二、GPGPU与GPU的区别

GPU的产生是为了解决图形渲染效率的问题,但随着技术进步,GPU越来越强大,尤其是shader出现之后(这个允许我们在GPU上编程),GPU能做的事越来越多,不再局限于图形领域,也就有人动手将其能力扩展到其他计算密集的领域,这就是GP(General Purpose)GPU。

三、为什么快

比如说你用美图xx软件,给一张图片加上模糊效果的时候,CPU会这么做:

使用一个模糊滤镜算子的小窗口,从图片的左上角开始处理,并从左往右,再从左往右进行游走处理,直到整个图片被处理完成。因为CPU只有一个或者少数几个核,所以执行这种运算的时候,只能老老实实从头遍历到最后。

但是有一些聪明的读者会发现,每个窗口在处理图片的过程中,都是独立的,相互没有关系的。那么同时用几个滤镜窗口来处理是不是更快一些? 于是我们有了GPU, 一般的GPU都有几百个核心,意味着,我们可以同时有好几百个滤镜窗口来处理这张图片。

所以说,GPU起初的设计目标就是为了处理这种图形图像的渲染工作,而这种工作的特性就是可以分布式、每个处理单元之间较为独立,没有太多的关联。而一部分机器学习算法,比如遗传算法,神经网络等,也具有这种分布式及局部独立的特性(e.g.比如说一条神经网络中的链路跟另一条链路之间是同时进行计算,而且相互之间没有依赖的),这种情况下可以采用大量小核心同时运算的方式来加快运算速度。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • gpu
    gpu
    +关注

    关注

    28

    文章

    5110

    浏览量

    134511
  • 人工智能
    +关注

    关注

    1813

    文章

    49783

    浏览量

    261870
  • 机器学习
    +关注

    关注

    66

    文章

    8541

    浏览量

    136271

原文标题:为何GPU可以用于加速人工智能或者机器学习的计算速度?

文章出处:【微信号:Imgtec,微信公众号:Imagination Tech】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    Lambda采用Supermicro NVIDIA Blackwell GPU服务器集群构建人工智能工厂

    人工智能/机器学习、HPC、云、存储和 5G/边缘的整体 IT 解决方案提供商 Super Micro Computer, Inc. (SMCI)今天宣布,超级智能云提供商 Lambd
    的头像 发表于 08-30 16:55 640次阅读

    挖到宝了!人工智能综合实验箱,高校新工科的宝藏神器

    和生态体系带到使用者身边 ,让我们在技术学习和使用上不再受制于人。 三、多模态实验,解锁AI全流程 它嵌入了2D视觉、深度视觉、机械手臂、语音识别、嵌入式传感器等多种类AI模块,涵盖人工智能领域主要
    发表于 08-07 14:30

    挖到宝了!比邻星人工智能综合实验箱,高校新工科的宝藏神器!

    和生态体系带到使用者身边 ,让我们在技术学习和使用上不再受制于人。 三、多模态实验,解锁AI全流程 它嵌入了2D视觉、深度视觉、机械手臂、语音识别、嵌入式传感器等多种类AI模块,涵盖人工智能领域主要
    发表于 08-07 14:23

    关于人工智能处理器的11个误解

    本文转自:TechSugar编译自ElectronicDesign人工智能浪潮已然席卷全球,将人工智能加速器和处理器整合到各类应用中也变得愈发普遍。然而,围绕它们是什么、如何运作、能如何增强
    的头像 发表于 08-07 13:21 899次阅读
    关于<b class='flag-5'>人工智能</b>处理器的11个误解

    超小型Neuton机器学习模型, 在任何系统级芯片(SoC)上解锁边缘人工智能应用.

    Neuton 是一家边缘AI 公司,致力于让机器 学习模型更易于使用。它创建的模型比竞争对手的框架小10 倍,速度也快10 倍,甚至可以在最先进的边缘设备上进行人工智能处理。在这篇博文
    发表于 07-31 11:38

    AI芯片:加速人工智能计算的专用硬件引擎

    人工智能(AI)的快速发展离不开高性能计算硬件的支持,而传统CPU由于架构限制,难以高效处理AI任务中的大规模并行计算需求。因此,专为AI优化的芯片应运而生,成为推动深度学习
    的头像 发表于 07-09 15:59 974次阅读

    最新人工智能硬件培训AI 基础入门学习课程参考2025版(大模型篇)

    人工智能大模型重塑教育与社会发展的当下,无论是探索未来职业方向,还是更新技术储备,掌握大模型知识都已成为新时代的必修课。从职场上辅助工作的智能助手,到课堂用于学术研究的智能工具,大模型正在工作生活
    发表于 07-04 11:10

    开售RK3576 高性能人工智能主板

    ,HDMI-4K 输出,支 持千兆以太网,WiFi,USB 扩展/重力感应/RS232/RS485/IO 扩展/I2C 扩展/MIPI 摄像头/红外遥控 器等功能,丰富的接口,一个全新八核拥有超强性能的人工智能
    发表于 04-23 10:55

    GPU加速计算平台的优势

    传统的CPU虽然在日常计算任务中表现出色,但在面对大规模并行计算需求时,其性能往往捉襟见肘。而GPU加速计算平台凭借其独特的优势,吸引了行业
    的头像 发表于 02-23 16:16 784次阅读

    GPU 加速计算:突破传统算力瓶颈的利刃

    在数字化时代,数据呈爆炸式增长,传统的算力已难以满足复杂计算任务的需求。无论是人工智能的深度学习、大数据的分析处理,还是科学研究中的模拟计算,都对算力提出了极高的要求。而云
    的头像 发表于 02-17 10:36 524次阅读

    人工智能机器学习以及Edge AI的概念与应用

    人工智能相关各种技术的概念介绍,以及先进的Edge AI(边缘人工智能)的最新发展与相关应用。 人工智能机器学习是现代科技的核心技术
    的头像 发表于 01-25 17:37 1613次阅读
    <b class='flag-5'>人工智能</b>和<b class='flag-5'>机器</b><b class='flag-5'>学习</b>以及Edge AI的概念与应用

    【「具身智能机器人系统」阅读体验】1.初步理解具身智能

    人工智能机器人技术和计算系统交叉领域感兴趣的读者来说不可或缺的书。这本书深入探讨了具身智能这一结合物理机器人和
    发表于 12-28 21:12

    【「具身智能机器人系统」阅读体验】+数据在具身人工智能中的价值

    嵌入式人工智能(EAI)将人工智能集成到机器人等物理实体中,使它们能够感知、学习环境并与之动态交互。这种能力使此类机器人能够在人类社会中有效
    发表于 12-24 00:33

    人工智能推理及神经处理的未来

    人工智能行业所围绕的是一个受技术进步、社会需求和监管政策影响的动态环境。机器学习、自然语言处理和计算机视觉方面的技术进步,加速
    的头像 发表于 12-23 11:18 882次阅读
    <b class='flag-5'>人工智能</b>推理及神经处理的未来

    《CST Studio Suite 2024 GPU加速计算指南》

    许可证模型的加速令牌SIMULIA统一许可证模型的SimUnit令牌积分授权。 4. GPU计算的启用 - 交互式模拟:通过
    发表于 12-16 14:25