0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

未来智能实验室的开展,用于运行神经网络的新的芯片的研究

mK5P_AItists 来源:未知 作者:工程师郭婷 2018-06-29 13:59 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

GPU上运行的神经网络已经在人工智能领域取得了一些惊人的进步,但这两者的合作还并不完美。IBM的研究人员希望能设计出一种专门用于运行神经网络的新的芯片,从而提供更快、更有效的替代方案。

直到本世纪初,研究人员才意识到,为视频游戏设计的GPU(图形处理单元)可以被用作硬件加速器,以运行比以前更大的神经网络。

这要归功于这些芯片能够并行进行大量计算,而不是像传统CPU那样按顺序处理它们。这对于同时计算构成深度学习神经网络的数百个神经元的权重特别有用。

GPU的引入使这一领域得到了发展,但这些芯片仍然需要将处理和存储分开,这意味着大量的时间和精力都花在了两者之间的数据传输上。这促使人们开始研究新的存储技术,这些技术能够存储和处理同一位置的权重数据,从而提高速度和能源效率。

这种新的存储设备通过调整它们的电阻水平,以模拟的形式存储数据——也就是说,数据被存储在一个连续的范围内,而不是数字存储器的二进制1和0。因为信息存储在存储单元的电导中,所以可以简单地在存储单元间传递电压并让系统通过物理方法来进行计算。

但是这些设备固有的物理缺陷意味着它们的行为并不一致,这导致了目前使用它们来训练神经网络的分类精度明显低于使用GPU。

“我们可以在一个比GPU更快的系统上进行训练,但如果训练操作不那么准确,那是没有用的,”领导该项目的IBM Research博士后研究员Stefano Ambrogio在接受Singularity Hub采访时说,“到目前为止,还没有证据表明使用这些新设备能像使用GPU一样精确。”

但研究又有了新的进展。发表在《自然》杂志上的一篇论文中,Ambrogio和他的同事们描述了他们是如何利用新兴的模拟记忆和更传统的电子元件组合来创造出一种芯片,这种芯片可以与GPU的精度相匹配,同时运行速度更快,能耗更少。

这些新的存储技术难以训练深层神经网络的原因是,这个过程需要将每个神经元的权重进行上下数千次的刺激,直到网络完全对齐。改变这些设备的电阻需要重新配置它们的原子结构,而且每次的操作过程都不一样,Ambrogio说。这些刺激并不总是完全相同,这导致了对神经元权重的不精确的调整。

研究人员通过创造“突触单元”来解决这个问题,这些“突触单元”每一个都对应于网络中的单个神经元,同时具有长期和短期记忆。每个单元格由一对相变存储器(PCM)单元和三个晶体管以及一个电容的组合构成,PCM在电阻中存储权重数据,电容将权重数据存储为电荷。

PCM是一种“非易失性存储器”,这意味着即使没有外部电源,它也能保留存储的信息,而电容器是“易失性的”,所以只能在几毫秒内保持它的电荷。但是电容器没有PCM设备的可变性,因此可以快速而准确地编程

当神经网络对图像进行训练以完成分类任务时,只有电容器的权重会被更新。在浏览到几千张图片后,权重数据会被转移到PCM单元进行长期存储。PCM的可变性意味着,权重数据的转移仍然有可能包含错误,但是由于该单元只是偶尔更新,所以可以在不增加系统复杂性的情况下再次检查电导。Ambrogio说,如果直接在PCM单元上进行训练,这就不可行了。

为了测试他们的设备,研究人员对他们的网络进行了一系列流行图像识别的基准测试,结果达到了与谷歌领先的神经网络软件TensorFlow相当的精确度。但重要的是,他们预测,最终构建出的芯片将比GPU的能效高280倍,而且在每平方毫米面积上实现的算力将达到CPU的100倍。值得注意的是,研究人员还没有完全构建出这一芯片。

虽然在测试中使用了真正的PCM单元,但其它组件是在计算机上模拟的。Ambrogio表示,他们希望在投入时间和精力打造完整的芯片之前,先检查一下这种方法是否可行。他说,他们决定使用真正的PCM设备,因为对这些设备的模拟还不太可靠,但其它组件的模拟技术已经很成熟了,他们有信心基于这个设计建立一个完整的芯片。

它目前也只能在全连接神经网络上与GPU竞争,在这个神经网络中,每个神经元都与上一层的神经元相连接,Ambrogio说。但实际上许多神经网络并没有完全连接,或者只有某些层完全连接在一起。

但Ambrogio说,最终的芯片将被设计成可以与GPU合作的形式,从而在处理其它连接时也能够处理全连接层的计算。他还认为,这种处理全连接层的更有效的方法可以被更广泛地应用。

这样的专用芯片能够使哪些事情成为可能?

Ambrogio说,有两个主要的应用:一是将人工智能应用到个人设备上,二是使数据中心更加高效。后者是大型科技公司的一大担忧,因为它们的服务器消耗了大量的电费。

如果直接在个人设备上应用人工智能,用户就可以不必在云端分享他们的数据,从而增加隐私性,但Ambrogio说,更令人兴奋的前景是人工智能的个性化。

他说:“在你的汽车或智能手机上应用这个神经网络,它们就能够不断地从你的经验中学习。”

“你的手机会专门针对你的声音进行个性化,你的汽车也会根据你的习惯形成独特的驾驶方式。”

未来智能实验室是人工智能学家与科学院相关机构联合成立的人工智能,互联网和脑科学交叉研究机构。

未来智能实验室的主要工作包括:建立AI智能系统智商评测体系,开展世界人工智能智商评测;开展互联网(城市)云脑研究计划,构建互联网(城市)云脑技术和企业图谱,为提升企业,行业与城市的智能水平服务。


声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • cpu
    cpu
    +关注

    关注

    68

    文章

    11219

    浏览量

    222979
  • 神经网络
    +关注

    关注

    42

    文章

    4829

    浏览量

    106810
  • 人工智能
    +关注

    关注

    1813

    文章

    49750

    浏览量

    261619

原文标题:让AI个性化而且功耗更低 IBM研发新型神经网络芯片

文章出处:【微信号:AItists,微信公众号:人工智能学家】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    中国汽研与国芯科技成立未来车芯验证转化联合实验室

    与中国质量认证中心、中认百链的“中国芯”联合研究实验室,以及与国芯科技的未来车芯验证转化联合实验室重磅发布,标志着中国汽研在车规芯片领域的能
    的头像 发表于 11-14 17:32 1159次阅读

    NMSIS神经网络库使用介绍

    :   神经网络卷积函数   神经网络激活函数   全连接层函数   神经网络池化函数   Softmax 函数   神经网络支持功能   该库具有
    发表于 10-29 06:08

    在Ubuntu20.04系统中训练神经网络模型的一些经验

    模型。 我们使用MNIST数据集,训练一个卷积神经网络(CNN)模型,用于手写数字识别。一旦模型被训练并保存,就可以用于对新图像进行推理和预测。要使用生成的模型进行推理,可以按照以下步骤进行操作: 1.
    发表于 10-22 07:03

    神经网络的并行计算与加速技术

    随着人工智能技术的飞速发展,神经网络在众多领域展现出了巨大的潜力和广泛的应用前景。然而,神经网络模型的复杂度和规模也在不断增加,这使得传统的串行计算方式面临着巨大的挑战,如计算速度慢、训练时间长等
    的头像 发表于 09-17 13:31 892次阅读
    <b class='flag-5'>神经网络</b>的并行计算与加速技术

    恩智浦与吉利汽车研究院成立联合创新实验室,共创汽车智能未来

    恩智浦半导体宣布,与吉利汽车研究院成立联合创新实验室,深化双方合作,聚焦智能化汽车技术,携手创新,助力吉利汽车智能化战略加速落地。 吉利汽车研究
    的头像 发表于 07-04 16:07 2304次阅读

    无刷电机小波神经网络转子位置检测方法的研究

    MATLAB/SIMULINK工具对该方法进行验证,实验结果表明该方法在全程速度下效果良好。 纯分享帖,点击下方附件免费获取完整资料~~~ *附件:无刷电机小波神经网络转子位置检测方法的研究.pdf
    发表于 06-25 13:06

    浦公山实验室正式启动!

    平台,力争成为国家级信创智算示范平台。实验室以自主可控GPU、CPU、系统软件等关键组件为核心,重点开展芯片设计研发、整机及基础软件适配、分布式算力平台搭建等工作。通
    的头像 发表于 06-24 10:11 824次阅读
    浦公山<b class='flag-5'>实验室</b>正式启动!

    神经网络RAS在异步电机转速估计中的仿真研究

    众多方法中,由于其结构简单,稳定性好广泛受到人们的重视,且已被用于产品开发。但是MRAS仍存在在低速区速度估计精度下降和对电动机参数变化非常敏感的问题。本文利用神经网络的特点,使估计更为简单、快速
    发表于 06-16 21:54

    感应电机智能调速

    转矩控制,感应电机的积分模型,基于积分模型和神经网络的参数估计方法,扩展卡尔曼滤波器的无速度传感器控制,遗传算法优化的随机脉冲宽度调制(PWM)策略,感应电机智能控制实验系统、实验
    发表于 05-28 15:53

    实验室安全管理成焦点,汉威科技赋能实验室安全升级

    实验室是国家科技创新体系的重要组成部分,是国家组织高水平基础研究和应用基础研究、聚集和培养优秀科学家、开展学术交流的重要基地。近年来,各高校、研究
    的头像 发表于 04-10 10:41 713次阅读
    <b class='flag-5'>实验室</b>安全管理成焦点,汉威科技赋能<b class='flag-5'>实验室</b>安全升级

    BP神经网络与卷积神经网络的比较

    BP神经网络与卷积神经网络在多个方面存在显著差异,以下是对两者的比较: 一、结构特点 BP神经网络 : BP神经网络是一种多层的前馈神经网络
    的头像 发表于 02-12 15:53 1324次阅读

    什么是BP神经网络的反向传播算法

    BP神经网络的反向传播算法(Backpropagation Algorithm)是一种用于训练神经网络的有效方法。以下是关于BP神经网络的反向传播算法的介绍: 一、基本概念 反向传播算
    的头像 发表于 02-12 15:18 1289次阅读

    BP神经网络与深度学习的关系

    BP神经网络与深度学习之间存在着密切的关系,以下是对它们之间关系的介绍: 一、BP神经网络的基本概念 BP神经网络,即反向传播神经网络(Backpropagation Neural N
    的头像 发表于 02-12 15:15 1358次阅读

    美的蓝橙实验室新动向:深耕重载机器人前沿技术

    蓝橙实验室,是依托美的集团的重载机器人全国重点实验室实验室自2022年由国家科技部批准建设,聚焦机器人核心零部件、整机设计、智能控制与智能
    的头像 发表于 02-10 09:52 2041次阅读

    人工神经网络的原理和多种神经网络架构方法

    所拟合的数学模型的形式受到大脑中神经元的连接和行为的启发,最初是为了研究大脑功能而设计的。然而,数据科学中常用的神经网络作为大脑模型已经过时,现在它们只是能够在某些应用中提供最先进性能的机器学习模型。近年来,由于
    的头像 发表于 01-09 10:24 2265次阅读
    人工<b class='flag-5'>神经网络</b>的原理和多种<b class='flag-5'>神经网络</b>架构方法