0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

“钴”时代正式登场 成新代半导体导线材料之王

h1654155971.7596 来源:未知 作者:胡薇 2018-06-22 16:05 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

半导体为根基的第三次产业革命浪潮在人工智能和大数据的助力下不断引爆,但眼见摩尔定律濒临极限,新材料的革新势必再上一个阶梯。从 1997 年 IBM 以“铜”取代“铝”后,二十年后的今天,属于“钴”的时代在半导体产业正式登场,将挑起产业转折点的跨时代任务!

半导体产业在这几年有不少关键转折点出现,但多半是在晶体管架构、设备技术上,如 3D 立体式鳍式晶体管 FinFET 接棒 2D 平面晶体管架构、 3D NAND 架构取代传统的 2D NAND 技术,这种立体式架构的革新让半导体制程顺利走入 14/16 纳米等高端技术。

另外,荷兰企业 ASML 的 EUV 光刻机即将在 7 纳米工艺技术上实现量产,这些都在半导体行业中都具有跨越时代的意义,值得历史留名,也因为有这些转折点的产生,摩尔定律的生命因此延续。

图丨钴矿

短短数年,我们经历了 FinFET 、 EUV 光刻机的成功,而半导体产业的下一个转折点其实就在不远处,会是由新材料的革新接棒,“钴”时代即将登场,逐渐终结“钨”和“铜”的时代。

10 纳米和 7 纳米节点进入钴导线时代,设备龙头应材推动产业革命的到来

随着半导体制程朝 10 纳米以下发展,原本以“铜”作为导线材料开始暴露导电速率不足等缺点,让制程工艺技术在 10 纳米、 7 纳米节点上遇到瓶颈,因此半导体大厂和设备大厂纷纷投入新材料研发,突破半导体制程技术的限制。

美国公司应用材料(Applied Materials, Inc)是全球半导体设备龙头,每年投入的研发经费十分可观,也是最早投入以“钴”作为导线材料取代传统“铜”、“钨”的半导体技术大厂之一,现在,这样的产业革命已经即将要落实在商用化芯片,具有划时代的意义!

在 10 纳米、 7 纳米等先进工艺下以“钴”作为导线材料,可以达到导电性能更强、功耗更低,芯片达到体积更小的目标,应材解释,这就是推动“PPAC”(效能 performace、功耗 power、面积 area、成本 cost)不断往前,未来甚至往下做到 5 纳米、 3 纳米工艺节点。

应用材料解释,不像是晶体管的体积越小,效能会越高,在金属镀层的接点和导线上,反而是体积越小,效能越差,如果把导线比喻成吸管,吸管越小是越容易阻塞,因此,导线材料的选择上有三个关键参考点,分别是填满能力、抗阻力、可靠度。

在 30 纳米以上的工艺技术,“铝”在填满、可靠度两方面表现不佳,但“铜”则是十分称职,因此仍扮演很重要的材料。

然进入 20 纳米以下高端工艺后,无论是钨、铝、铜的表现其实都不理想,相较之下,“钴”在填满能力、抗阻力、可靠度三方面是异军突起,尤其在半导体 10 /7 纳米以下的高端技术,“钴”是新一代导线材料之王。

图丨钨铝铜钴的比较

应材分析,晶体管的关键临界尺寸(Critical Dimension)是在 15 纳米左右,意思是到了该尺寸时,钴与铜的性能参数比达到交叉点,而所谓晶体管的关键临界尺寸,与制程技术工艺节点之间的比例约是 2 比 1,意思是,当 15 纳米是使用铜材料的关键临界尺寸极限,放大到制程工艺节点上,瓶颈就是 7 纳米左右。

关于“钨”时代的登场,应材进一步表示,在芯片关键临界尺寸的微缩上,“钨”与“铜”两个金属材料在 10 纳米以下已经无法完成微缩任务,因为其电性在晶体管接点与局部中段金属导线制程上已逼近物理极限,“钨”与“铜”再也无法导入成为接口,这就成为 FinFET 无法发挥完全效能的一大瓶颈。

而“钴”这个金属刚好能消除这个瓶颈,但也需要在制程系统策略上进行变革,随着产业将结构微缩到极端尺寸,这些材料的表现会有所不同,而且必须在原子级上,有系统地进行工程,通常是在真空的条件下进行。

英特尔于 IEEE 国际电子元件会议上首度揭露钴材料细节,将采用 10 纳米节点

应材在 2013 年就投入“钴”材料的开发,花了很多时间通过客户认证,进而导入客户端协助高端工艺的芯片商用化。而究竟是哪些客户使用了“钴”这个深具产业转折点的新材料在关键的半导体制程上?

虽然应材表示不能评论客户的技术。但聪明的读者可以推论,眼下有 7 纳米和 10 纳米技术即将问世的半导体大厂,当属台积电、三星、英特尔,其中,英特尔在 IEEE 国际电子元件会议(IEDM)上,已经公开揭橥了“钴”材料的奥妙。

英特尔已经在 IEEE 上透露,将在 10 纳米工艺节点的部分互连层上,导入钴材料的计划细节,在 10 纳米节点互连的最底部两个层导入钴材料,可以达到 5~ 10 倍的电子迁移率改善,并且降低两倍的通路电阻,这算是众多半导体制造大厂中,第一个公开讨论分享钴材料使用在制程技术上的细节的企业。

图丨钨和铜的迁移状况比较

回顾半导体产业上一波的材料革新是 15 ~ 20 年前的 0.13 微米关键制程。在 0.13 微米以前,是使用铝作为导线材料,但 IBM 率先导入铜制程,让金属导线的电阻率降低,且讯号传输速度和功耗成长,在半导体史上是划时代的一页。

半导体业者分析,铜离子的扩散系数高,容易进入介电或是硅材料中,导致电性飘移或是制程腔体遭到污染,但当时的 IBM 研发出双镶嵌法(Dual Damascene),先蚀刻出金属导线所需之沟槽与洞(Trench & Via),并沉积一层薄薄的阻挡层(Barrier)与衬垫层(Liner),之后再将铜回填,如此一来便可防止铜离子扩散,成功迎来半导体的铜制程时代。

20 年后的今日,半导体材料再度出现变革,在制程技术上导入“钴”作为新的导体材料,设备商也将迎来新的商机。业界预期,“钴”金属材料将从 7/10 纳米起步,开始进入半导体导线制程,预计在 5 纳米工艺结点以下,会扩大采用“钴”材料。

针对“钴”材料,应材有一系列的半导体设备作为对应,包括 Endura 平台上的物理气相沉积(PVD)、原子层沉积(ALD)、化学气相沉积(CVD)等机台设备。应材的 Endura 平台是半导体产业史上最成功的金属化系统,累积 20 年来全球有 100 个客户使用超过 4,500 台的 Endura 系统。

图丨应用材料Endura 系统

再者,应材也界定出一套整合性的钴组合产品,包括 Phroducer 平台上的退火、 Reflexion LK Prime CMP 平台上的平坦化,以及 PROVision 平台上的电子束检测,这套整合材料解决方案是针对 7 纳米和以下的制程,可以加速芯片效能,且缩短产品上市的时间。

半导体面临近 20 年来最重要的材料变革,可以看见技术推进之手已经换人,象征产业领航者的更迭。进入 7 纳米工艺以下,半导体技术难度快速窜升,包括英特尔的 10 纳米延迟多年尚未问世,也透露摩尔定律推前的难度大增。

另一个趋势是半导体设备大厂在产业转折当下,扮演越来越重要的关键角色,像是 ASML 为了解开 EUV 光刻机的瓶颈,曾找来英特尔、台积电、三星三大客户的集资研发,如今 EUV 光刻机即将进入 7 纳米芯片生产。

再者,应材在半导体关键材料“铜”进入“钴”的时代,也扮演领航者的角色,提前多年就大举投入研发,如今将伴随英特尔、台积电、三星的 7 纳米和 10 纳米芯片进入商用化,具有举足轻重的地位。

在“后摩尔定律”世代中,为了延续该定律产业产生的经济效益,半导体产业各个环节无不卯足全力接棒演出,晶体管架构的改变、 EUV 光刻机的诞生、过往不被重视的封装技术也跃升成为主流技术,而材料更是关键环节。“钴”材料从 7 纳米为起始点,将在 5 纳米、3 纳米中扮演主流角色,引领未来 10 年的半导体产业时代。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 英特尔
    +关注

    关注

    61

    文章

    10278

    浏览量

    179418
  • 半导体
    +关注

    关注

    336

    文章

    30047

    浏览量

    258988

原文标题:“钴”荣登新一代半导体导线材料之王,将终结近 20 年的“铜”时代,挑起续命摩尔定律重任

文章出处:【微信号:Anxin-360ic,微信公众号:芯师爷】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    是德科技Keysight B1500A 半导体器件参数分析仪/半导体表征系统主机

    电子器件、材料半导体和有源/无源元器件。 可以在 CV 和 IV 测量之间快速切换,无需重新连接线缆。 能够捕获其他传统测试仪器无法捕获的超快速瞬态现象。 能够检测 1 kHz 至 5 MHz
    发表于 10-29 14:28

    材料与应用:第三半导体引领产业升级

    以氮化镓(GaN)、碳化硅(SiC)为代表的第三半导体材料,正加速替代传统硅基材料,在新能源汽车、工业控制等领域实现规模化应用。GaN 凭借更高的电子迁移率和禁带宽度,成为高频通信、
    的头像 发表于 10-13 18:29 355次阅读

    第四半导体“氧化镓(Ga2O3)”材料的详解

    ,还请大家海涵,如有需要可看文尾联系方式,当前在网络平台上均以“ 爱在七夕时 ”的昵称为ID跟大家一起交流学习! 近两年来,氧化镓作为一种“超宽禁带半导体材料,得到了持续关注。超宽禁带半导体也属于“第四
    的头像 发表于 09-24 18:23 4189次阅读
    第四<b class='flag-5'>代</b><b class='flag-5'>半导体</b>“氧化镓(Ga2O3)”<b class='flag-5'>材料</b>的详解

    功率半导体器件——理论及应用

    功率半导体器件的使用者能够很好地理解重要功率器件(分立的和集成的)的结构、功能、特性和特征。另外,书中还介绍了功率器件的封装、冷却、可靠性工作条件以及未来的材料和器件的相关内容。 本书可作为微电子
    发表于 07-11 14:49

    电镜技术在第三半导体中的关键应用

    第三半导体材料,以碳化硅(SiC)和氮化镓(GaN)为代表,因其在高频、高效率、耐高温和耐高压等性能上的卓越表现,正在成为半导体领域的重要发展方向。在这些
    的头像 发表于 06-19 14:21 520次阅读
    电镜技术在第三<b class='flag-5'>代</b><b class='flag-5'>半导体</b>中的关键应用

    SiC碳化硅第三半导体材料 | 耐高温绝缘材料应用方案

    发展最成熟的第三半导体材料,可谓是近年来最火热的半导体材料。尤其是在“双碳”战略背景下,碳化硅被深度绑定新能源汽车、光伏、储能等节能减碳行
    的头像 发表于 06-15 07:30 858次阅读
    SiC碳化硅第三<b class='flag-5'>代</b><b class='flag-5'>半导体</b><b class='flag-5'>材料</b> |  耐高温绝缘<b class='flag-5'>材料</b>应用方案

    第三半导体的优势和应用领域

    随着电子技术的快速发展,半导体材料的研究与应用不断演进。传统的硅(Si)半导体已无法满足现代电子设备对高效能和高频性能的需求,因此,第三半导体
    的头像 发表于 05-22 15:04 1740次阅读

    第一半导体被淘汰了吗

    半导体产业的百年发展历程中,“第一半导体是否被淘汰”的争议从未停歇。从早期的锗晶体管到如今的硅基芯片,以硅为代表的第一半导体
    的头像 发表于 05-14 17:38 810次阅读
    第一<b class='flag-5'>代</b><b class='flag-5'>半导体</b>被淘汰了吗

    揭秘半导体电镀工艺

    定向沉积在晶圆表面,从而构建高精度的金属互连结构。 从铝到铜,芯片互连的进化之路: 随着芯片制造工艺不断精进,芯片内部的互连线材料也从传统的铝逐渐转向铜。半导体镀铜设备因此成为芯片制造中的“明星设备”。 铜的优势:铜导线拥有更低
    的头像 发表于 05-13 13:29 2247次阅读
    揭秘<b class='flag-5'>半导体</b>电镀工艺

    电子束半导体圆筒聚焦电极

    掺杂的半导体材料可以满足要求。本文不介绍驻极体材料,重点介绍P型掺杂的半导体材料材料可以是P型
    发表于 05-10 22:32

    半导体材料电磁特性测试方法

    从锗晶体管到 5G 芯片,半导体材料的每一次突破都在重塑人类科技史。
    的头像 发表于 04-24 14:33 1110次阅读
    <b class='flag-5'>半导体</b><b class='flag-5'>材料</b>电磁特性测试方法

    芯片制造中的半导体材料介绍

    半导体元素是芯片制造的主要材料,芯片运算主要是用二进制进行运算。所以在电流来代表二进制的0和1,即0是不通电,1是通电。正好半导体通过一些微观的构造与参杂可以这种性质。
    的头像 发表于 04-15 09:32 1466次阅读
    芯片制造中的<b class='flag-5'>半导体</b><b class='flag-5'>材料</b>介绍

    半导体材料发展史:从硅基到超宽禁带半导体的跨越

    半导体:硅与锗的奠基时代 时间跨度: 20世纪50年至70年 核心材料: 硅(Si)、锗(Ge) 硅(Si) 锗(Ge) 优势: ①成本
    的头像 发表于 04-10 15:58 2364次阅读

    石墨烯成为新一半导体的理想材料

    )等二维材料因结构薄、电学性能优异成为新一半导体的理想材料,但目前还缺乏高质量合成和工业应用的量产技术。 化学气相沉积法(CVD)存在诸如电性能下降以及需要将生长的TMD转移到不同衬
    的头像 发表于 03-08 10:53 1136次阅读

    与安世半导体共同迎接工业4.0时代到来

    随着物联网(IoT)的发展和工业4.0时代的到来,工业转型正朝着提高能效、实现功率微型化和改善系统可靠性的方向发展。面对这些挑战,安世半导体的智能工业应用方案提供了极具前瞻性的解决方案,能够助力应对转型中的难题。
    的头像 发表于 01-23 11:11 1055次阅读