0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

芯片封装失效的典型现象

中科院半导体所 来源:学习那些事 2025-07-09 09:31 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

文章来源:学习那些事

原文作者:前路漫漫

本文介绍了芯片封装失效的典型现象:金线偏移、芯片开裂、界面开裂、基板裂纹和再流焊缺陷。

金线偏移

在封装过程中,金线偏移是较为常见的失效类型。对于 IC 元器件而言,金线偏移量过大可能致使相邻金线相互接触,进而引发短路故障;极端情况下,金线甚至会被冲断,造成断路,使元器件出现缺陷。引发金线偏移的原因复杂多样,具体如下:

树脂流动拖曳力:在填充阶段,若树脂黏性过高、流速过快,产生的拖曳力会作用于金线,导致其偏移量增大,这是金线偏移失效的常见诱因 。

导线架变形:上下模穴中树脂流动波前失衡,会在模流间形成压力差。导线架受此压力差产生弯矩发生变形,由于金线连接于导线架的芯片焊垫与内引脚,导线架变形便会引发金线偏移。

气泡移动影响:填充过程中,空气进入模穴形成小气泡,气泡在模穴内移动时碰撞金线,也会造成金线一定程度的偏移。

保压异常:过保压会使模穴内压力过高,导致偏移的金线无法弹性恢复;迟滞保压则会引起温度上升,对于添加催化剂后反应活跃的树脂,高温使其黏性进一步增加,同样阻碍金线恢复原状。

填充物碰撞:封装材料中添加的填充物,若颗粒尺寸较大(如 2.5 - 250μm),在封装过程中与精细的金线(如 25μm)碰撞,也可能致使金线偏移 。

此外,随着多引脚集成电路的发展,封装内金线数量与引脚数目不断增加,金线密度随之提升,这也使得金线偏移现象更为显著。为有效减少金线偏移,防范短路或断路问题,封装工程师需审慎选择封装材料,精准调控工艺参数,降低模穴内金线所受应力,避免出现过大的偏移量。

芯片开裂

IC 裸芯片的制造原料通常为单晶硅,这种材料虽具备高强度,却因脆性大的特性,在遭受外力作用或表面存在瑕疵时,极容易出现破裂情况。在晶圆减薄、晶圆切割、芯片贴装和引线键合等一系列需要施加应力的工艺操作过程中,芯片开裂的风险大幅增加,这一问题已成为致使 IC 封装失效的重要因素之一。若芯片裂纹未蔓延至引线区域,通过常规手段很难发现;更有部分存在裂纹的芯片,在常规工艺检查与电学性能检测时,其性能表现与正常芯片并无明显差异,使得裂纹问题极易被忽略。然而,这些隐藏的裂纹会对封装后器件的稳定性与使用寿命造成严重威胁。由于常规电学性能测试无法有效识别芯片开裂,因此需要借助高低温热循环实验进行检测。该实验利用不同材料热膨胀系数的差异,在加热和冷却交替过程中,材料间产生的热应力会促使裂纹逐步扩展,直至芯片彻底破裂,最终在电学性能上呈现出异常状态。

鉴于外部应力是引发芯片开裂的主因,一旦检测到芯片存在裂纹,就必须立即对芯片封装的工艺流程和参数进行优化,最大程度减少工艺环节对芯片产生的应力影响。例如,在晶圆减薄工序中,采用更为精细的加工方式,提高芯片表面的平整度,以此消除潜在应力;晶圆切割时,运用激光切割技术替代传统方法,降低切割过程对芯片表面造成的应力损伤;在引线键合环节,精准调控键合温度和压力参数,确保键合过程平稳安全。

界面开裂

开裂问题不仅存在于芯片内部,在不同材料的交界位置同样会出现,这种现象被称为界面开裂。在界面开裂的初始阶段,各部件之间的电气连接尚能维持正常,但随着使用时间的延长,热应力的持续作用以及电化学腐蚀的影响,会导致界面开裂程度不断加剧,最终破坏部件间的电气连通性,对集成电路的可靠性产生严重影响。封装过程中应力过大、封装材料受到污染等工艺缺陷,是引发界面开裂的主要根源。界面开裂可能出现在金线与焊盘的连接部位,造成电路断路故障;也可能发生在外部塑料封装体中,降低封装对芯片的防护性能,导致芯片受到污染。因此,必须采用专业的检测方法对潜在的界面开裂问题进行全面排查,并根据检测结果对工艺方案进行针对性调整 。

基板裂纹

在倒装焊工艺里,通过焊球实现芯片与基板焊盘的电气连接,而在此过程中,基板开裂是较为常见的失效模式,在引线键合环节同样可能出现此类问题。基板一旦开裂,会严重干扰芯片正常的电学性能,引发断路、高阻抗等故障,影响集成电路的整体功能。

基板开裂的成因较为复杂,一方面,芯片或基板本身若存在材料缺陷、内部应力集中等问题,会降低其结构强度;另一方面,焊接过程中的工艺参数匹配不当也是关键因素。例如,键合力过大、基板温度控制不合理、超声功率设置不精准等,都会使基板承受额外应力,进而导致裂纹产生 。

再流焊缺陷

晶圆翘曲

再流焊工艺容易引发晶圆翘曲问题。由于封装体由多种材料构成,各材料热膨胀系数存在差异,同时还受流动应力和黏着力影响,在封装过程中外界温度变化时,封装体内部会产生内应力,而翘曲变形便是材料释放内应力的一种表现形式,这种现象在再流焊接阶段尤为突出。翘曲受多个工艺参数协同作用,通过针对性调整部分参数,能够有效缓解或消除这一问题。

器件受力不均衡是导致翘曲的主要根源。在预热阶段,因材料热膨胀系数不匹配、焊膏涂覆不均或器件放置偏差等原因,器件一端可能脱离焊膏,阻碍热量正常传导。当热量经器件传导时,一端先熔化的焊料会形成新月形,其表面张力产生的旋转力矩大于器件自身重力,从而致使器件发生翘曲变形。

为改善晶圆翘曲状况,可从多方面着手优化工艺:首先,要严格把控焊膏印刷与器件放置精度,规范设备操作流程,定期维护印刷和安装设备,确保生产过程稳定;其次,重视印刷清晰度与精确度控制,这直接关系到衬垫配置,若控制不当会加剧器件两端受力失衡,需定期检查印刷配准参数,及时修正偏差,清洁印刷模板防止堵塞,同时保证焊膏湿度适宜,支撑基板平整坚固;最后,关注器件放置环节,定期校准进料器位置,精准控制放置对准,降低放置速度,合理选择拾取工具喷嘴尺寸,并确保支撑平台平稳可靠。

此外,焊接材料和印刷电路板特性也会对翘曲产生影响。焊接合金熔点时的表面张力大小,与翘曲时的扭曲力呈正相关,虽目前尚无统一的合金标准评估体系,但部分厂商尝试使用 Sn/Pb/In 合金,发现对翘曲有一定抑制作用,但效果有限。不同类型焊膏的特性差异,会改变其对器件的作用效果,焊膏活性越强,越易引发翘曲;印刷电路板和器件表面的光洁度,会影响焊膏湿润性能,过量使用焊膏会增加熔化时的应力,适当减少用量有助于降低翘曲风险。在再流焊过程中,若器件两端热传递速率差异显著,也会因受力不均导致翘曲现象发生 。

锡珠

在再流焊工艺中,锡珠是一种常见的缺陷类型,多聚集于无引脚片式元器件两侧。若锡珠未与其他焊点相连,不仅会影响封装外观,还可能干扰产品电性能。锡珠产生的原因涵盖多个方面,涉及模板设计、印刷操作、锡膏使用及工艺参数设置等环节。

从模板开口角度来看,若钢网开口尺寸过大,或开口形状与元器件、焊盘不匹配,在贴装片式元器件时,焊膏易溢出焊盘范围,进而形成锡珠。为规避此问题,片式阻容元器件的模板开口尺寸通常应略小于印制板焊盘。考虑到线路板刻蚀因素,一般将焊盘的模板开口设置为印制板焊盘尺寸的 90% - 95%,同时还需依据实际生产情况灵活选择合适的开口形状,以此减少焊膏过量挤出的风险。

模板与印刷电路板的精准对位及稳固固定同样关键。对位偏差会致使焊膏蔓延至焊盘外,增加锡珠产生几率。印刷锡膏的方式包括手工、半自动和全自动,即便在全自动印刷模式下,压力、速度、间隙等参数仍依赖人工设定。因此,无论采用何种印刷方式,都需协调好机器、模板、印刷电路板和刮刀之间的关系,确保印刷质量稳定。在锡膏使用方面,从冷藏室取出的锡膏若升温时间不足、搅拌不均匀,容易吸湿。在高温再流焊过程中,锡膏内水汽挥发,就会形成锡珠。所以,使用前应将锡膏在室温下放置约 4 小时恢复温度,并充分搅拌均匀 。

温度曲线作为再流焊工艺的核心参数,包含预热、保温、回流、冷却四个阶段。预热和保温环节能够降低元器件与印刷电路板所受热冲击,促使锡膏中溶剂充分挥发。若预热温度不足或保温时间过短,将直接影响焊接质量,通常建议保温阶段控制在 150 - 160℃、持续 70 - 90 秒。此外,生产中若需重新印刷锡膏,务必彻底清理残留锡膏,防止其形成锡珠,清理时应避免锡膏流入插孔造成通孔堵塞 。

空洞

空洞也是再流焊的主要缺陷之一,表现为焊点表面或内部存在气孔、针孔。其形成原因多样:焊膏中金属粉末含氧量过高、使用回收焊膏、工艺环境差混入杂质等,需严格把控焊膏质量;焊膏受潮吸收水汽,可通过控制环境温度在 20 - 26℃、相对湿度 40% - 70%,且待焊膏达室温后再开盖使用来解决;元件焊端、引脚、印制电路板焊盘氧化污染或印制板受潮,应遵循元件先进先出原则,避免在潮湿环境存放并注意使用期限;升温速率过快导致焊膏中溶剂和气体未充分挥发,可将 160℃前的升温速率控制在 1 - 2℃/s。

再流焊过程中还存在多种其他缺陷。例如,焊膏熔融不完全,表现为焊点周围部分或全部焊膏未熔化;湿润不良,即元件焊端、引脚或焊盘出现不沾锡或局部不沾锡现象;焊料量不足,焊点高度未达规定标准,影响焊点机械强度与电气连接可靠性,甚至引发虚焊、断路;桥连(短路),元件端头、引脚或与邻近导线间出现不应有的焊锡连接;锡点高度异常,焊料向焊端或引脚根部迁移,高度触及或超过元件体;锡丝,元件焊端、引脚间或与通孔间存在细微锡丝;元件或端头出现裂纹、缺损;元件端头电极镀层剥落;冷焊(焊锡紊乱),焊点表面有焊锡紊乱痕迹;焊点表面或内部出现裂缝等。还有一些肉眼难以察觉的缺陷,如焊点晶粒大小、内部应力、内部裂纹等,需借助 X 射线检测、焊点疲劳测试等手段才能发现 。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 晶圆
    +关注

    关注

    53

    文章

    5349

    浏览量

    131713
  • 芯片封装
    +关注

    关注

    13

    文章

    604

    浏览量

    32089

原文标题:芯片封装失效典型现象

文章出处:【微信号:bdtdsj,微信公众号:中科院半导体所】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    基于扇出型封装结构的芯片失效位置定位方法

    本文主要设计了用于封装可靠性测试的菊花链结构,研究了基于扇出型封装结构的芯片失效位置定位方法,针对芯片偏移、RDL 分层两个主要
    发表于 10-07 11:29 2066次阅读
    基于扇出型<b class='flag-5'>封装</b>结构的<b class='flag-5'>芯片</b><b class='flag-5'>失效</b>位置定位方法

    [原创]FA电子封装失效分析培训

    失效分析内容简介:1.电子封装失效分析:电子封装简介, 失效定义及分类, 电子产品为何失效,
    发表于 02-19 09:54

    智能电表失效现象失效原因有哪些?

    有没有智能电表方面的高手啊?我想请教下,智能电表中的电子元器件一般会出现一些什么样的失效现象失效原因一般是什么?非常感谢。
    发表于 03-08 10:11

    芯片失效分析

    、试验和使用中的失效现象时有发生,要弄清楚元器件失效的原因及其规律和影响因素,往往并非易事,芯片失效分析就是通过查明
    发表于 06-24 17:04

    用硅胶封装、导电银胶粘贴的垂直倒装芯片易出现漏电现象

    金鉴检测在大量LED失效案例总结的基础上,发现用硅胶封装、银胶粘结的垂直倒装芯片易出现漏电现象。这是因为,硅胶具有吸水透气的物理特性,易使导电银胶受潮,水分子侵入后在含银导体表面电解形
    发表于 05-13 11:23

    【转帖】LED芯片失效封装失效的原因分析

    失效模式表所示。这里将LED从组成结构上分为芯片和外部封装两部分。 那么, LED失效的模式和物理机制也分为芯片
    发表于 02-05 11:51

    芯片失效分析

    表面分层,可以使键合点与芯片金属层分离,或者接触不良,引起器件失效。a、器件安装时受到的机械或者热应力。c、温度冲击,主要指一些使用环境温度的急速变化。芯片、焊料、键合丝、塑封料、引线框架等的材质不同,其线膨胀系数不同,在温度变
    发表于 01-10 10:55

    芯片失效分析含义,失效分析方法

    失效分析(FA)是一门发展中的新兴学科,近年开始从军工向普通企业普及。它一般根据失效模式和现象,通过分析和验证,模拟重现失效现象,找出
    发表于 04-07 10:11

    LED芯片失效分析

    分析对象的背景,确认失效现象,接着制定LED失效分析方案,研究LED失效原因与机理,最后提出后续预防与改进措施。 金鉴实验室综合数千个失效
    发表于 10-22 09:40

    LED芯片失效分析

    分析对象的背景,确认失效现象,接着制定LED失效分析方案,研究LED失效原因与机理,最后提出后续预防与改进措施。 金鉴实验室综合数千个失效
    发表于 10-22 15:06

    关于封装失效机理你知道多少?

    而在键合引线和芯片底座上施加的载荷。进行塑封器件组装时出现的爆米花现象就是一个典型的例子。综合载荷应力条件在制造、组装或者操作的过程中,诸如温度和湿气等失效加速因子常常是同时存在的。综
    发表于 11-19 06:30

    常用的芯片失效分析方法

    失效分析是根据失效模式和现象,通过分析和验证,模拟重现失效现象,找出失效的原因,挖掘出
    的头像 发表于 10-12 11:08 6052次阅读

    IGBT失效模式和失效现象

    今天梳理一下IGBT现象级的失效形式。 失效模式根据失效的部位不同,可将IGBT失效分为芯片
    发表于 02-22 15:05 27次下载
    IGBT<b class='flag-5'>失效</b>模式和<b class='flag-5'>失效</b><b class='flag-5'>现象</b>

    保护器件过电应力失效机理和失效现象浅析

    保护器件过电应力失效机理和失效现象浅析
    的头像 发表于 12-14 17:06 1833次阅读
    保护器件过电应力<b class='flag-5'>失效</b>机理和<b class='flag-5'>失效</b><b class='flag-5'>现象</b>浅析

    芯片失效分析的方法和流程

    、物理分析、材料表征等多种手段,逐步缩小问题范围,最终定位失效根源。以下是典型分析流程及关键方法详解:       前期信息收集与失效现象确认 1. 
    的头像 发表于 02-19 09:44 2564次阅读