0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

如何加速深度学习_GPU、FPGA还是专用芯片

电子工程师 来源:网络整理 2018-03-31 07:15 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

计算机发展到今天,已经大大改变了我们的生活,我们已经进入了智能化的时代。但要是想实现影视作品中那样充分互动的人工智能与人机互动系统,就不得不提到深度学习

深度学习

深度学习的概念源于人工神经网络的研究。含多隐层的多层感知器就是一种深度学习结构。深度学习通过组合低层特征形成更加抽象的高层表示属性类别或特征,以发现数据的分布式特征表示。

深度学习的概念由Hinton等人于2006年提出。基于深信度网(DBN)提出非监督贪心逐层训练算法,为解决深层结构相关的优化难题带来希望,随后提出多层自动编码器深层结构。此外Lecun等人提出的卷积神经网络是第一个真正多层结构学习算法,它利用空间相对关系减少参数数目以提高训练性能。

深度学习是机器学习研究中的一个新的领域,其动机在于建立、模拟人脑进行分析学习的神经网络,它模仿人脑的机制来解释数据,例如图像,声音和文本。

同机器学习方法一样,深度机器学习方法也有监督学习与无监督学习之分.不同的学习框架下建立的学习模型很是不同.

例如,卷积神经网络(Convolutional neural networks,简称CNNs)就是一种深度的监督学习下的机器学习模型,而深度置信网(Deep Belief Nets,简称DBNs)就是一种无监督学习下的机器学习模型。

Artificial Intelligence,也就是人工智能,就像长生不老和星际漫游一样,是人类最美好的梦想之一。虽然计算机技术已经取得了长足的进步,但是到目前为止,还没有一台电脑能产生“自我”的意识。是的,在人类和大量现成数据的帮助下,电脑可以表现的十分强大,但是离开了这两者,它甚至都不能分辨一个喵星人和一个汪星人。

图灵(图灵,大家都知道吧。计算机和人工智能的鼻祖,分别对应于其著名的“图灵机”和“图灵测试”)在 1950 年的论文里,提出图灵试验的设想,即,隔墙对话,你将不知道与你谈话的,是人还是电脑。这无疑给计算机,尤其是人工智能,预设了一个很高的期望值。但是半个世纪过去了,人工智能的进展,远远没有达到图灵试验的标准。这不仅让多年翘首以待的人们,心灰意冷,认为人工智能是忽悠,相关领域是“伪科学”。

但是自 2006 年以来,机器学习领域,取得了突破性的进展。图灵试验,至少不是那么可望而不可及了。至于技术手段,不仅仅依赖于云计算对大数据的并行处理能力,而且依赖于算法。这个算法就是,Deep Learning。借助于 Deep Learning 算法,人类终于找到了如何处理“抽象概念”这个亘古难题的方法。

2012年6月,《纽约时报》披露了Google Brain项目,吸引了公众的广泛关注。这个项目是由著名的斯坦福大学的机器学习教授Andrew Ng和在大规模计算机系统方面的世界顶尖专家JeffDean共同主导,用16000个CPU Core的并行计算平台训练一种称为“深度神经网络”(DNN,Deep Neural Networks)的机器学习模型(内部共有10亿个节点。这一网络自然是不能跟人类的神经网络相提并论的。要知道,人脑中可是有150多亿个神经元,互相连接的节点也就是突触数更是如银河沙数。曾经有人估算过,如果将一个人的大脑中所有神经细胞的轴突和树突依次连接起来,并拉成一根直线,可从地球连到月亮,再从月亮返回地球),在语音识别和图像识别等领域获得了巨大的成功。

项目负责人之一Andrew称:“我们没有像通常做的那样自己框定边界,而是直接把海量数据投放到算法中,让数据自己说话,系统会自动从数据中学习。”另外一名负责人Jeff则说:“我们在训练的时候从来不会告诉机器说:‘这是一只猫。’系统其实是自己发明或者领悟了“猫”的概念。”

2012年11月,微软在中国天津的一次活动上公开演示了一个全自动的同声传译系统,讲演者用英文演讲,后台的计算机一气呵成自动完成语音识别、英中机器翻译和中文语音合成,效果非常流畅。据报道,后面支撑的关键技术也是DNN,或者深度学习(DL,DeepLearning)。

用什么加快计算速度?异构处理器

在摩尔定律的作用下,单核标量处理器的性能持续提升,软件开发人员只需要写好软件,而性能就等待下次硬件的更新,在2003年之前的几十年里,这种“免费午餐”的模式一直在持续。2003年后,主要由于功耗的原因,这种“免费的午餐”已经不复存在。为了生存,各硬件生产商不得不采用各种方式以提高硬件的计算能力,以下是目前最流行的几种方式是。

1) 让处理器一个周期处理多条指令 ,这多条指令可相同可不同。如Intel Haswell处理器一个周期可执行4条整数加法指令、2条浮点乘加指令,同时访存和运算指令也可同时执行。

2) 使用向量指令 ,主要是SIMD和VLIW技术。SIMD技术将处理器一次能够处理的数据位数从字长扩大到128或256位,也就提升了计算能力。

3) 在同一个芯片中集成多个处理单元 ,根据集成方式的不同,分为多核处理器或多路处理器。多核处理器是如此的重要,以至于现在即使是手机上的嵌入式ARM处理器都已经是四核或八核。

4) 使用异构处理器,不同的架构设计的处理器具有不同的特点,如X86 处理器为延迟优化,以减少指令的执行延迟为主要设计考量(当然今天的X86 处理器设计中也有许多为吞吐量设计的影子);如NVIDIA GPUAMD GPU则为吞吐量设计,以提高整个硬件的吞吐量为主要设计目标。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • gpu
    gpu
    +关注

    关注

    28

    文章

    5111

    浏览量

    134515
  • 深度学习
    +关注

    关注

    73

    文章

    5591

    浏览量

    123970
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    FPGAGPU加速的视觉SLAM系统中特征检测器研究

    (Nvidia Jetson Orin与AMD Versal)上最佳GPU加速方案(FAST、Harris、SuperPoint)与对应FPGA加速方案的性能,得出全新结论。
    的头像 发表于 10-31 09:30 330次阅读
    <b class='flag-5'>FPGA</b>和<b class='flag-5'>GPU</b><b class='flag-5'>加速</b>的视觉SLAM系统中特征检测器研究

    【「AI芯片:科技探索与AGI愿景」阅读体验】+第二章 实现深度学习AI芯片的创新方法与架构

    、Transformer 模型的后继者 二、用创新方法实现深度学习AI芯片 1、基于开源RISC-V的AI加速器 RISC-V是一种开源、模块化的指令集架构(ISA)。优势如下: ①模
    发表于 09-12 17:30

    AI 芯片浪潮下,职场晋升新契机?

    运算能力,是其在深度学习训练环节发挥优势的关键,相关工作成果对证明专业能力极为重要。 若投身于 FPGA 芯片研发,鉴于 FPGA 可重构、
    发表于 08-19 08:58

    FPGA在机器学习中的具体应用

    随着机器学习和人工智能技术的迅猛发展,传统的中央处理单元(CPU)和图形处理单元(GPU)已经无法满足高效处理大规模数据和复杂模型的需求。FPGA(现场可编程门阵列)作为一种灵活且高效的硬件
    的头像 发表于 07-16 15:34 2655次阅读

    AI芯片加速人工智能计算的专用硬件引擎

    人工智能(AI)的快速发展离不开高性能计算硬件的支持,而传统CPU由于架构限制,难以高效处理AI任务中的大规模并行计算需求。因此,专为AI优化的芯片应运而生,成为推动深度学习、计算机视觉、自然语言
    的头像 发表于 07-09 15:59 982次阅读

    【「算力芯片 | 高性能 CPU/GPU/NPU 微架构分析」阅读体验】+NVlink技术从应用到原理

    自家GPU 提出的多卡算力互连技术,是早期为了应对深度学习对超高算力需求而单卡算力不足的局面的解决方案,当然这都是官方用来吹牛的话术。我自己在2019年左右第一次接触到多卡交火的GIY玩法(从学生到
    发表于 06-18 19:31

    GPU架构深度解析

    GPU架构深度解析从图形处理到通用计算的进化之路图形处理单元(GPU),作为现代计算机中不可或缺的一部分,已经从最初的图形渲染专用处理器,发展成为强大的并行计算引擎,广泛应用于人工智能
    的头像 发表于 05-30 10:36 1415次阅读
    <b class='flag-5'>GPU</b>架构<b class='flag-5'>深度</b>解析

    FPGA+AI王炸组合如何重塑未来世界:看看DeepSeek东方神秘力量如何预测......

    。• AI加速器的开发:FPGA被广泛用于开发专为AI算法优化的加速器,例如深度学习推理加速器。
    发表于 03-03 11:21

    GPU加速计算平台的优势

    传统的CPU虽然在日常计算任务中表现出色,但在面对大规模并行计算需求时,其性能往往捉襟见肘。而GPU加速计算平台凭借其独特的优势,吸引了行业内人士的广泛关注和应用。下面,AI部落小编为大家分享GPU
    的头像 发表于 02-23 16:16 787次阅读

    当我问DeepSeek AI爆发时代的FPGA是否重要?答案是......

    并行架构使其在处理深度学习中的矩阵运算、卷积运算等任务时,效率远高于传统的CPU和GPU。例如,在图像识别任务中,FPGA可以通过并行处理多个卷积核,显著
    发表于 02-19 13:55

    GPU 加速计算:突破传统算力瓶颈的利刃

    在数字化时代,数据呈爆炸式增长,传统的算力已难以满足复杂计算任务的需求。无论是人工智能的深度学习、大数据的分析处理,还是科学研究中的模拟计算,都对算力提出了极高的要求。而云 GPU
    的头像 发表于 02-17 10:36 531次阅读

    军事应用中深度学习的挑战与机遇

    人工智能尤其是深度学习技术的最新进展,加速了不同应用领域的创新与发展。深度学习技术的发展深刻影响了军事发展趋势,导致战争形式和模式发生重大变
    的头像 发表于 02-14 11:15 835次阅读

    fpga和cpu的区别 芯片gpu还是CPU

    型的芯片,它们在结构、功能、应用场景等方面存在显著差异。 结构与灵活性 FPGAFPGA是一种可编程逻辑器件,其内部由大量的可编程逻辑单元(CLB)、输入/输出模块(IOB)、可编程互连资源
    的头像 发表于 02-01 14:57 3103次阅读

    FPGA在AI方面有哪些应用

    提供了强有力的支持。 一、FPGA深度学习中的应用 深度学习是 AI 的重要分支,涉及海量的数据运算。
    的头像 发表于 01-06 17:37 2166次阅读

    GPU加速云服务器怎么用的

    GPU加速云服务器是将GPU硬件与云计算服务相结合,通过云服务提供商的平台,用户可以根据需求灵活租用带有GPU资源的虚拟机实例。那么,GPU
    的头像 发表于 12-26 11:58 880次阅读